The SLAPD and SLURPD Administrator’'s Guide
University of Michigan

30 April 1996
Release 3.3

Copyright

Copyright © 1992-1996 Regents of the University of Michigan. All Rights
Reserved.

Redistribution and use in source and binary forms are permitted provided that this
noticeis preserved and that due credit is given to the University of Michigan a Ann
Arbor. The name of the University may not be used to endorse or promote products
derived from this software or documentation without specific prior written
permission. This software is provided "as is' without any express or implied
warranty.

Acknowledgments

The LDAP development team a the University of Michigan consists of Tim
Howes, Mark Smith, Gordon Good, Lance Sloan and Steve Rothwell. Our thanks
also to Bryan Beecher, Frank Richter, Eric Rosenquist, Peter Whittaker, Martijn
Koster, Craig Watkins, Rocky Rakesh Patel, Alan Young, Mark Prior, Enrique
Silvestre Mora, Roland Hedberg, and numerous others.

Table of Contents

1. INTRODUCTION TO SLAPD AND SLURPD ...t 6
L1IWHAT ISA DIRECTORY SERVICE?. ... tttittiiit ittt e et ettt e e et e e e e et e e et e e e e e ae e es 6
L2 WHAT IS DA ettt ettt e e ettt e e e e e e e e 6
L3 HOW DOES LDAP WORK 2. ... ettt st ettt et ettt e et e e e e e e e e e et e e et e e et e et et e e et et e e et e e eaaeaaenees 8
LAWHAT ISSLAPD AND WHAT CAN IT DO, ettt e et e e e e et e e e e e e e et e e e eneenen 8
L5 WHAT ABOUT X.5007. et tetttti e e e et eee bttt e e et e ettt s e oo e et et ettt e e s e e e e e e e ee bbb e e e e e e e eesbabnneeeeaees 9
LOEWHAT ISSLURPD AND WHAT CAN IT DO, 1ttt tttittittiie e e ettt e s et e e s et et s e s e et e et a et neanenaenen 9
2. A QUICK-START GUIDE TO RUNNING SLAPDcoiiiiiiiiiiiii i 10
3. THE BIG PICTURE - CONFIGURATION CHOICES........ccii i 12
3.1 LDAPASA LOCAL SERVICE ONLY ..tuitiitiitiit ettt et e eeeaee et e et ete e seneeaeaneae et easeteeaaenaeneenaanaanns 12
3.2 LOCAL SERVICEWITH X.500 REFERRALS.ctitiititeteie e ee e e e e s et e e e e e ae e ae e e eaaenaenns 12
3.3LDAPASA FRONT END TO X.500. . .11 ttititiiteineiete e eise s ee e st e e s e et e e et e s e e ene e e e e e e anaanas 13
3 A REPLICATED SLAPD SERVICE ...t uititittitiitets et s e e sae e aa e r e e e et et et s et n et n et nataetn e nean et e et ans 13
4. BUILDING AND INSTALLING SLAPD & SLURPD......iiiiiiiiiiii e 14
4.1 PRE-BUILD CONFIGURATION. ...ttt ttttttetieeteeeteeeaseeneeaeeaeetaeesseanaeaneesneeanaeseenseenseenseenaeaneennees 14
4.1.1 Editing the Make-commOn fil... ..o 14
4.1.2 Editing the include/ldapconfig.n fil..... ... 16
A2 MAKING THE SOFTWAREot ittt ettt et e e e e e e et e e e et et e et e et et e et e et e et e et e e aneaaeaees 17
A 3 INSTALLING THE SOFTWAREuitttitiettie e e et et e e e e e et et etr et e et et e et n et n e n et e e naaaeenees 17
5. THE SLAPD CONFIGURATION FILE. ... it 19
5.1 CONFIGURATION FILE FORMAT ...ttt ettt ettt e et enneenns 19
5.2 CONFIGURATION FILE OPTIONS. ... it iitititeet et etee e et e et e eteeae et e ee e ae et e e s et e ea s et e eneeneaneaneanaanns 19
5.2.1 GlODAl OPLIONS. ...t 20
5.2.2 General Backend OptiONS ceuu ettt e et e e et e et e e e e eaans 22
5.2.3 LDBM Backend-Specific OPLiONSccuuiiiiiiiiieei et 24
5.2.4 Shell Backend-SpeCifiC OPtioNS..........uiiiiiieiiieii e e e e e e e ans 25
5.2.5 Password Backend-Specific OptioNS..........viiieiiiii e e 26
LI Y @ L Y 0 VI (S 26
5.3.1What t0 CONLIOl BCCESS 0. ... eeueiitee et e e et e e e e e e e e e e et e e e e e e e eeneeenns 26
5.3.2 VWO 10 GFrant @CCESSTO .. evueeieeit e et e ettt e ettt e e et e e e e e e e et e e et e e et e e e aa e aeneeanns 27
SRR I 0T (oo] (o o =1 o | PP UPTPP 28
5.3.4 ACCESS CONLrol EVAIUALION......ccoiiiiiiiiii et 28
5.3.5 ACCESS CONrOl EXAMPIESccvuiieii e e e e e e e e e e e e e e ean s 28
5.4 SCHEMA ENFORCEMENT ...ttt titetet et e e e e e e e e e e e e e et e et e et et e et et e et et e et et et e et aeaneaaenaenaenaenns 29
5.5 CONFIGURATION FILE EXAMPLEviitiiiii et e e e e et e e e e et e e e e e e e e e anaanns 30
B. RUNNING SL A P D . e e e 33
6.1 COMMAND-LINE OPTIONS. ..t ttttttetttieiettseee s et s a et e s s r e e e et et et e et n et e et n et e et naa e ananaetnens 33
6.2 RUNNING SLAPD ASA STAND-ALONE DAEMONctuititiitieieieie et e e et e e ae s e e 34
6.3 RUNNING SLAPD FROM INETD ... eeuteutiiteeeeeaeet et eaa e e eete e e e eeasaen s aenseanseaees e enaeanaeanneaneeenns 34
7. MONITORING SL AP D. . e e e e e 35
8. DATABASE CREATION AND MAINTENANCE TOOLS. ...cciiiiiiiiiiiiiiiean e 37
8.1 CREATING A DATABASE OVER LDAP. .. et e 37
8.2 CREATING A DATABASE OFF-LINE ...\ ititiitiititisie e s e a st et e e e et e e e e e e nea e e e e e anaanas 38
8.2.1 The [dif2ldbmM Program e e e e e e e e e e et e e e aens 39
LS 1 0= Ko [2] g 1= T o0 =y o 40
8.2.3 The [dif2id2ENtrY PrOGraM. ... ieeei ettt ettt e et e et eeeba s 41
8.24 The ldif2id2children Programue i 41

L 1 0 T= Ko o o= oo | =T o 41

8.2.6 TNE IAIf PrOGIAM ... vttt et e et e e e e e e s 41
8.3 THE LDIF TEXT ENTRY FORMAT ..t uttittitt ittt et e te e et e e e et e e e et e eae e e e et e e e e e ea s et e e e en e e eaneanaanns 42
8.4 CONVERTING FROM QUIPU EDB FORMAT TOLDIF FORMAT ...viiiiiiiiei e 43

8.4.1 The edD2ldif PrOgraM cee ettt et e e e et e e et e e e e eeens 43

8.4.2 Step-by-step EDB t0 LDIF CONVEISIONcuuiiieiiieeei e e e e e s e e e e e e e e et e e e e eanaeees 44
8.5 THE LDBMTEST PROGRAMetiietitettte et ettt et e et e e e et e et e e e e e e s e e s e e e e e e et e ea e en e an e anneaneeenes 45
8.6 THE LDBM DATABASE FORMAT ..t uitittiit ittt e ee e e e et et et e e e et e e e e e e et e e te e et et e eneeneaneaneanaanns 46

S ST R @V Y= P 46

8.6.2 Attribute iNdeX FOrMAL.........ccue i e e 47

8.6.3 OthEr INUEXES.ceeei ettt e r et e e e 47
9. PERFORMANCE TUNING . .. e 48
O L THE ALLIDSTHRESHOLD .. etuttttitieee et eete et e et e et ee et e et e et e e e e e e s e en s e e s e e e eaeea e en e anaeanaeeneeenes 48
LS A I | N I A 5 48
.3 THE DB CACHE ...t ettteittti e e e et ettt e e e e e e et ettt e e e e e e e e et ettt e e e e e e e e e e ee bbb e e aeaeeeeeabaann e aeaeeens 48
9AMAINTAIN THE RIGHT INDICES ...t ttttittt et et e e e e e s e e e e e e et e et e e et n et e et n e e et n et e e aa e e eaneas 49
10. DISTRIBUTING SLAPD AT A e 50
11. REPLICATION WITH SLURPD ... e 51
L1.1 OVERVIEW ..ttt ettt e e et e e e e e et et e e e e e e e e e e e e e ea e e e e e e e e e a e en e an e e e an s 51
112 REPLICATION LOGS .. . ititiitiet ittt ettt e e e e e e e e e et e et e et et e e e e et e e et e e et ea et et e et et e a et raaanaenns 51
11.3 COMMAND-LINE OPTIONS it ttitittieteett et eee e e e e et e e e et e et e et e e et ea e et e e et raa et eaaraaenaeens 52
11.4 CONFIGURING SLURPD AND A SLAVE SLAPD INSTANCE.iuitiitieieiie e ee e e e e e eeneene e e 53

11.4.1 Set up the MASLEr SIaPU. e e 53

11.4.2 Set UP the SlAVE SlAPRA. ... c.ei i e 54

11.4.3 Shut down the MAaster SIaPdc.vuiii e e e e e 54

11.4.4 Copy the master slapd’sdatabasetothe ave. ..., 54

11.4.5 Configure the master slapd for repliCation..............viiiiiiiiiii e 54

11.4.6 Restart the master dlapd and start the dave Sapd..........ooouviiiiiiii e 55

I s = g A 1V oo I PP UPTRUPPRRPIN 55
11.5 ADVANCED SLURPD OPERATION ... ttttttit ittt te i ease e et s ets et e eeeaeee e ae et e e eteaan et e ea s e s eneeneens 55

ST = o)== 55

11.5.2 Surpd’ sone-shot mode and regfeCt fillES.......o.uuiiiiiiii e 56
11.6 REPLICATION FROM A SLAPD DIRECTORY SERVERTOAN X.500DSA ..o 56
12. APPENDIX A: WRITING A SLAPD BACKEND ...ttt 58
121 THE SLAPD BACKEND AP .. e e e 59

2 = 1T o o PP PSP PP 59

L2102 UNDING .. 60

R o 0o T T PP PPTTPPTRPIN 60

D204 SEAICR e 61

L2.1.5 MOITY ..o e ettt e e e e et a e e e e e b 63

12.1.6 MOy RDIN ...ttt ettt e e et e ettt e e e e e e e e enbbe s 64

L2.0.7 AU, e 65

L2, 1.8 DB, ..ot 65

200 TR 2 o 7= o (oo 66

2t T (O I T 1 =1 (o PSR 66

2 I N O 4 1o [0 = o T TP TUPTRPPRRN 66

N I O o TP P PP PP PP 67
12.2 UTILITY ROUTINES YOUR BACKEND MAY WANT TO CALL ..uuvuiiiiiiiieei e 67

A S < o (o S = T o T 1= 67

12.2.2 SeNAING 8 RESUIT ...ccveee e e e 68

12.2.3 Testing a Filter AQaiNSt an ENIY.........ueiiiiiiiii e 68

1224 Creating @N ENEIY ... 68
13. APPENDIX B: WRITING A SHELL BACKEND......ccoiiiiii e 70

L3 L OVERVIEW ...ttt ettt ettt et e e et e et e e e et e e e e e e e e e 70

G T2 N 1 2 70
G207 = 11 o S SPPTTRN 70
G372 W 1 o 1 oo PN 71
I B = o o P 71
G B e 0107 T PP 71
R 728 5T Y/ o T 1Y/ 72
13.2.6 MOOITY RDN ..ottt ettt ae e eae e 72
G2 A Y o PPN 72
IR Sl B = = (SR 72
L3.2.9 ADBNAON ...t et e a et e eaa e aa 73

L33 OUTPUT FORMAT . titittttt ettt ettt e e e e e e e et ettt r et etr et e et e e e et r et e ettt r et n et e et et e et et e e aneenns 73
T 00 0=~ T = 1Y 73
T T = U= | PPN 73
13.3.3 DEDUGUING -ttt ettt ettt ettt ettt ettt e e et et e e e e et e e e e e et et e e e eba e aeae 73

I o g IS 7. U P 73

SIS 0N 1 1= I P 74
13.5.1 ConfigUuration fil@.........iiie e e 74
13.5.2 Search command Shell SCHIPL......cuuuiii e e e e e e e e e e e eanaees 74

14. APPENDIX C: DISTRIBUTED INDEXING WITH CENTIPEDE...................... 76

I N NN 1 = P 77

I 1 1 I T 78

15. APPENDIX D: USING KERBEROS AUTHENTICATION WITH SLAPD AND

SL U R PP D . ot 79

15.1 BUILD THE U-M LDAP PACKAGE WITH KERBEROS SUPPORT ENABLEDccuvvvuiiieiiiiieiiennnns 79

15.2 USING KERBEROSWITH SLAPD ...ttt ittt et e e e e e e e e e e e e e e et e e e et e e e e a e e e e e aneeneens 79
15.2.1 Obtain a srvtab Filefor Your Slapd SErVErcoouuiiiiiie e 79
15.2.2 Install the srvtab Fileand Tell Slapd Where 1t 1S ... 80
15.2.3 Add Kerberos Namesto Entries to Enable Authentication..............ccoooviiiiiniii e, 80
15.2.4 Associate a Kerberos Name with the “ rootdn” (optional)..........cc.eevvieiiiieiiin e, 81

15.3 USING KERBEROSWITH SLURPD.....uttitiitineitstin et eeteeaeetaeeae e eeteenseanesteenneaneeaneenareneeeneenns 8l
15.3.1 Obtain a srvtab File for Your SIUrpa SErvEr..... oo 81
15.3.2 Configure the slapd Saves to Accept Kerberos Authenticationc.coooivviiiiiiiiiinenann.. 81
15.3.3 Configure slurpd to Use Kerberos When Connecting to the Saves.cocoiviiiiiiiiiineeennn. 82

1.

Introduction to s/apd and slurpd

This document describes how to build, configure, and run the stand-alone LDAP
daemon (dapd) and the stand-alone LDAP update replication daemon (slurpd). It is
intended for newcomers and experienced administrators alike. This section provides
abasic introduction to directory service, and the directory service provided by dapd
in particular.

1.1 What is a directory service?

A directory islike a database, but tends to contain more descriptive, attribute-based
information. The information in adirectory is generaly read much more often than
it iswritten. As a consequence, directories don't usually implement the complicated
transaction or roll-back schemes regular databases use for doing high-volume
complex updates. Directory updates are typicaly simple al-or-nothing changes, if
they are alowed at all. Directories are tuned to give quick-response to high-volume
lookup or search operations. They may have the ability to replicate information
widely in order to increase availability and reliability, while reducing response time.
When directory information is replicated, temporary inconsistencies between the
replicas may be OK, aslong asthey get in sync eventually.

There are many different ways to provide a directory service. Different methods
alow different kinds of information to be stored in the directory, place different
requirements on how that information can be referenced, queried and updated, how
it is protected from unauthorized access, etc. Some directory services are local,
providing service to a restricted context (e.g., the finger service on a single
machine). Other services are global, providing service to a much broader context
(e.g., the entire Internet). Global services are usualy distributed, meaning that the
datathey contain is spread across many machines, al of which cooperate to provide
the directory service. Typically aglobal service defines auniform namespace which
gives the same view of the data no matter where you are in relation to the data itself.

1.2 What is LDAP?

Sapd's model for directory service is based on a globa directory model called
LDAP, which stands for the Lightweight Directory Access Protocol. LDAP is a
directory service protocol that runs over TCP/IP. The nitty-gritty details of LDAP
are defined in RFC 1777 "The Lightweight Directory Access Protocol." This
section gives an overview of LDAP from a user's perspective.

What kind of information can be stored in the directory? The LDAP directory
service model is based on entries. An entry is a collection of attributes that has a
name, cdled a distinguished name (DN). The DN is used to refer to the entry
unambiguously. Each of the entry's attributes has a type and one or more values.
The types are typically mnemonic strings, like"cn" for common name, or "mai | "
for email address. The values depend on what type of attributeit is. For example, a
mai | attribute might contain the value "babs@m ch. edu”. A j pegPhot o
attribute would contain a photograph in binary JPEG/JFIF format.

How is the information arranged? In LDAP, directory entries are arranged in a
hierarchical tree-like sructure that reflects politica, geographic and/or

organizational boundaries. Entries representing countries appear a the top of the
tree. Below them are entries representing states or national organizations. Below
them might be entries representing people, organizationa units, printers,
documents, or just about anything else you can think of. Figure 1 shows an
example LDAP directory tree, which should help make things clear.

TN

c=GB c=US

/\

o=U of M 0=Acme, Inc.
/ mail: info@acme.com
fax: 313 123-4567
cn=Barbara J Jensen
cn: Babs Jensen

cn: Barbara Jensen
mail: babs@umich.edu

Figure 1. An example LDAP directory tree.

In addition, LDAP alowsyou to control which attributes are required and allowed
in an entry through the use of a special attribute caled obj ect cl ass. The values
of theobj ect cl ass attribute determine the schema rules the entry must obey.

How is the information referenced? An entry is referenced by its distinguished
name, which is constructed by taking the name of the entry itself (caled the relative
distinguished name, or RDN) and concatenating the names of its ancestor entries.
For example, the entry for Barbara Jensen in the example above has an RDN of
"cn=Barbara J Jensen" and a DN of "cn=Barbara J Jensen, o0=U
of M c¢=US". The full DN format is described in RFC 1779, "A String
Representation of Distinguished Names."

How is the information accessed? LDAP defines operations for interrogating and
updating the directory. Operations are provided for adding and deleting an entry
from the directory, changing an existing entry, and changing the name of an entry.
Most of the time, though, LDAP s used to search for information in the directory.
The LDAP search operation allows some portion of the directory to be searched for
entries that match some criteria specified by a search filter. Information can be
requested from each entry that matches the criteria.

For example, you might want to search the entire directory subtree below the
University of Michigan for people with the name Barbara Jensen, retrieving the
emal address of each entry found. LDAP lets you do this easily. Or you might
want to search the entries directly below the c=US entry for organizations with the
string "Acme" in their name, and that have a fax number. LDAP lets you do this
too. The next section describes in more detail what you can do with LDAP and how
it might be useful to you.

How is the information protected from unauthorized access? Some directory
services provide no protection, allowing anyone to see the information. LDAP
provides a method for a client to authenticate, or prove its identity to a directory

server, paving the way for rich access control to protect the information the server
contains.

1.3 How does LDAP work?

LDAP directory service is based on a client-server model. One or more LDAP
servers contain the data making up the LDAP directory tree. An LDAP client
connects to an LDAP server and asks it a question. The server responds with the
answer, or with a pointer to where the client can get more information (typicaly,
another LDAP server). No matter which LDAP server a client connects to, it sees
the same view of the directory; a name presented to one LDAP server references the
same entry it would at another LDAP server. Thisis an important feature of aglobal
directory service, like LDAP.

1.4 What is slapd and what can it do?

Sapd is an LDAP directory server that runs on many different UNIX platforms.
You can useit to provide adirectory service of your very own. Your directory can
contain pretty much anything you want to put in it. Y ou can connect it to the global
LDAP directory service, or run a service dl by yourself. Some of slapd's more
interesting features and capabilities include:

Choice of databases: Sapd comes with three different backend databases you
can choose from. They are LDBM, a high-performance disk-based database;
SHELL, a database interface to arbitrary UNIX commands or shell scripts;, and
PASSWD, asimple password file database.

Multiple database instances: Sapd can be configured to serve multiple
databases a the same time. This means that a single dapd server can respond to
requests for many logically different portions of the LDAP tree, using the same or
different backend databases.

Generic database API: If you require even more customization, dapd lets you
write your own backend database easily. Sapd consists of two distinct parts. a
front end that handles protocol communication with LDAP clients; and a backend
that handles database operations. Because these two pieces communicate via a well-
defined C API, you can write your own customized database backend to slapd.

Access control: Sapd provides a rich and powerful access control facility,
allowing you to control access to the information in your database(s). You can
control access to entries based on LDAP authentication information, 1P address,
domain name and other criteria.

Threads: Sapd is threaded for high performance. A single multi-threaded dapd
process handles dl incoming requests, reducing the amount of system overhead
required. Sapd will automatically select the best thread support for your platform.

Replication: Sapd can be configured to maintain replica copies of its database.
This master/dave replication scheme is vita in high-volume environments where a
single dapd just doesn't provide the necessary availability or reliability.

Configuration: Sapd is highly configurable through a single configuration file
which allows you to change just about everything you'd ever want to change.
Configuration options have reasonable defaults, making your job much easier.

Sapd also hasits limitations, of course. It does not currently handle aliases, which
are part of the LDAP model. The main LDBM database backend does not handle
range queries or negation queries very well. These features and more will be
coming in afuture release.

1.5 What about X.5007?

LDAP was originally developed as afront end to X.500, the OS| directory service.
X.500 defines the Directory Access Protocol (DAP) for clients to use when
contacting directory servers. DAP is a heavyweight protocol that runs over a full
OSl stack and requires a significant amount of computing resources to run. LDAP
runs directly over TCP and provides most of the functionality of DAP a a much
lower cost.

Thisuse of LDAP makes it easy to access the X.500 directory, but still requires a
full X.500 service to make data avallable to the many LDAP clients being
developed. Aswith full X.500 DAP clients, afull X.500 server isno small piece of
software to run.

The stand-alone LDAP daemon, or slapd, is meant to remove much of the burden
from the server sidejust as LDAP itself removed much of the burden from clients.
If you are already running an X.500 service and you want to continue to do so, you
can probably stop reading this guide, which is dl about running LDAP via slapd,
without running X.500. If you are not running X.500, want to stop running
X.500, or have no immediate plans to run X.500, read on.

It is possible to replicate data from a dapd directory server to an X.500 DSA,
which alows your organization to make your data available as part of the globa
X.500 directory service on a"read-only" basis. Thisisdiscussed in section 11.6.

Another way to make data in a dapd server available to the X.500 community
would be by using a X.500 DAP to LDAP gateway. At thistime, no such software
has been written (to the best of our knowledge), but hopefully some group will see
fit towrite such a gateway.

1.6 What is slurpd and what can it do?

Surpd is a UNIX daemon that helps dapd provide replicated service. It is
responsible for distributing changes made to the master dapd database out to the
various slapd replicas. It frees dapd from having to worry that some replicas might
be down or unreachable when a change comes through; durpd handles retrying
failed requests automatically. Sapd and durpd communicate through a smple text
filethat is used to log changes.

2. A Quick-Start Guide to Running slapd

This section provides a quick step-by-step guide to building, installing and running
dlapd. It is intended to provide users with a simple and quick way to get started
only. If you intend to run slapd seriously, you should read the rest of this guide.

1. Get the software. Sapd is part of the LDAP distribution, which you can
retrieve using this URL :

ftp://terminator.rs.itd.um ch.edu/ldap/ldap.tar.Z
If you are reading this guide, you have probably already done this.

2. Untar the distribution. Pick a place for the LDAP source to live, cd
there, and untar it. For example:

cd /usr/local/src
zcat ldap.tar.Z | tar xvf -

3. Configure the software. You will have to edit two files to configure
things for your site.

vi Make- conmmon
vi include/l dapconfig. h.edit

Read the comments in Make- conmon and configure things appropriately.
If you have the Berkeley DB package installed, or the GDBM package, you
should set the L DBVBACKEND variable accordingly. Otherwise, the defaults
should be OK to get you started.

In the include/l dapconfig.h.edit file be sure to set the
DEFAULT _BASE and LDAPHOST variables to something appropriate for
your site. Other than that, the defaults should work OK.

4. Make the software. From the top level LDAP source directory, type:

make

Examine the output of thiscommand carefully to ensure everything is made
properly. If this command fails, seek help.

5. Install the software. From the top level LDAP source directory, type:

su
make i nstall

Examine the output of this command carefully to ensure everything is
installed properly.

6. Make a configuration file. Create a file caled nysl apd. conf and
enter the following linesinto it. See Section 5 for more details on thisfile.

referral ldap://ldap.itd.un ch.edu

dat abase | dbm

suf fix "0=<YOUR ORGANI ZATI O\>, c=US"

r oot dn "cn=<YOUR NAME>, 0=<YOUR CORGANI ZATI ON>, c=US
rootpw secret

Be sure to replace “<YOUR ORGANI ZATI ON>* with the name of your
organization and "<YOUR NAME>" with your name. If you are not in the
US, replace “US” with your two-letter country code. The r oot dn and

10

r oot pw lines are only required if later you want to easily add or modify
entriesvia LDAP.

7. Create a database. Thisis atwo-step process. Step A is to create afile

(we'll cal it nyl di f) containing the entries you want your database to
contain. Use the following example asaguide, or see Section 7.3 for more
details.

dn: 0=<YOUR ORGAN ZATI ON>, c=US
0: <YOUR ORGANI ZATI ON\>
obj ectcl ass: organi zation

dn: cn=<YOUR NAME>, 0=<YOUR CORGANI ZATI ON>, c=US
cn: <YOUR NAME>

sn: <YOUR LAST NAME>

mai | : <YOUR EMAI L ADDRESS>

obj ectcl ass: person

Y ou can include additiona entries and attributes in this file if you want, or
add them later viaLDAP.

Step B isto run thisfile through atool to create the dlapd database.
$(ETCDIR) /I di f 2 dom -f nysl apd. conf -i nyldif

Where nysl apd. conf is the configuration file you made in step 6, and
nyl di f isthefile you made in step 7A above. By default, the database
fileswill be created in/ usr/ t np. You may specify an dternate directory
viathedi r ect or y optioninthesl apd. conf file.

8. Start slapd. Because slapd listens on a privileged TCP port number, you
will need to be root to do this.

su
$(ETCDI R) /sl apd -f nysl apd. conf

9. Seeif it works. You can use any LDAP client to do this, but our example
usesthel dapsear ch tool.

| dapsearch -h 127.0.0.1 'objectcl ass=*'

This command will search for and retrieve every entry in the database. Note
the use of single quotes around the filter, which preventsthe “*” from being
interpreted by the shell.

You are now ready to add more entries (e.g., using ldapadd(3) or another LDAP
client), experiment with various configuration options, backend arrangements, etc.
Note that by default, the dapd database grants READ access to everybody. So if
you want to add or modify entries over LDAP, you will have to bind as the
r oot dn specified in the config file (see Section 5.2.2), or change the default
access control (see Section 5.3).

The following sections provide more detailed information on making, installing,
and running slapd.

11

3. The Big Picture - Configuration Choices

This section gives a brief overview of various LDAP directory configurations, and
how your LDAP server (either dlapd or Idapd) fitsin with the rest of the world.

3.1 LDAP as a local service only

In this configuration, you run a dapd which provides directory service for your
local domain only. It does not interact with other directory serversin any way. This
configuration is shown in Figure 2.

LDAP

LDAP 1=
client |——p»

' slapd

Figure 2: Local servicevia dapd configuration.

Use this configuration if you are just starting out (it's the one the quick-start guide
makes for you) or if you want to provide alocal service and are not interested in
connecting to the rest of the world. It's easy to upgrade to another configuration
later if you want.

3.2 Local service with X.500 referrals

In this configuration, you run a dapd which provides directory service for your
local domain and an ldapd which provides access to the X.500 world (you don’t
have to run the Idapd yourself — you can just point to somebody else who does and
doesn't mind you pointing to their service). This configuration is shown in

Figure 3.
slapd
LDAV
referral
LDAP
client ‘
LDAN\ DAP
+d— X500
|dapd 1l p=| server

Figure 3: Local serviceviadapd + X.500 referrals configuration
Use this configuration if you want to provide loca service but still want to be

connected to the rest of the X.500 world. Remember, you don’t necessarily have to
be running the Idapd in this picture; you just need to find one you can point to.

12

3.3 LDAP as a front end to X.500

In this configuration, you run an X.500 service which provides directory service
for your local domain and gatewaying service to the rest of the X.500 world. LDAP
clients gain access to the directory through an Idapd which runs a your site. This

configuration is shown i

LDAP
client

n Figure 4.

LDAP DAP
- Idapd @———| X.500
——— P ! server

Figure 4: Local service via X.500 and Idapd configuration

Use this configuration if you are aready running an X.500 service. Sapd is not

involved in this configuration, so you can probably stop reading this guide.

3.4 Replicated slapd service

The durpd daemon is used to propagate changes from a master dapd to one or

more slave dlapds. An example master-slave configuration is shown in figure 5.

Replication

mast er

Log
> \

slapd

LDAP
slurpd

LDAP

LDAP
client

Figure 5: Master dapd with two saves replicated with Surpd

This configuration can be used in conjunction with the first two configurations in
gtuations where a single dapd does not provide the required reliability or

availability.

13

LDAP

slave
slapd

slave
slapd

4. Building and Installing s/lapd & slurpd

Building and installing dapd requires three simple steps. configuring; making; and
installing. The following sections describe each step in detail. If you are reading
this guide, chances are you have aready obtained the software, but just in case,
here’'s where you can get the latest version of the U-M LDAP package, which
includes al of the software discussed in this guide:

ftp://termnator.rs.itd.umch. edu/l dap/ldap.tar.Z
Thereisaso an LDAP homepage accessible from the World Wide Web. This page

contains the latest LDAP news, release announcements, and pointers to other
resources. Y ou can accessit at:

http://ww. um ch. edu/ ~r sug/ | dap/

4.1 Pre-Build Configuration

4.1.1

Before building slapd, be sure to take alook at the README file in the top leve
directory in the distribution so that you are familiar with the genera configuration
and make process.

Briefly, you should edit the i ncl ude/ | dapconfig. h.edit and Make-
conmon files to contain the site-specific configuration your site requires before
making. The next sections discuss these stepsin more detail.

Editing the Make- common file

All of the general Make- common configuration variables (e.g., ETCDI R,
Bl NDI R, etc.) apply to both slapd and slurpd. There are additional Make- conmon
configuration variables that also affect how dapd and durpd are built. They are:

MAKE_SLAPD

This option controls whether dapd and slurpd get built a all. You should
st ittoyes, likethis:

MAKE_SLAPD = yes

SLAPD_BACKENDS

This option controls which dapd backend databases get built. You should
set it to one or more of the following:

- DLDAP_LDBM This is the main backend. It is a high-performance
disk-based database suitable for handling up to a
million entries or so. See the LDBMBACKEND and
LDBMLI B options below.

- DLDAP_PASSWD This is a simple search-only backend that can be
pointed & an /et c/ passwd file. It is intended
more as an example than as area backend.

14

- DLDAP_SHELL This backend alows the execution of arbitrary
system administrator-defined commands in response
to LDAP queries. The commands to execute are
defined in the configuration file. See Appendix B for
more information on writing shell backend
programs.

Example to enable the LDBM and SHEL L backends only:

SLAPD_BACKENDS= - DLDAP_LDBM - DLDAP_SHELL

The default isto build all three backends. Note that building a backend only
means that it can be enabled through the configuration file, not that it will
automatically be enabled.

L DBIVBACKEND

This option should only be defined if you have enabled the LDBM backend
as described above. The LDBM backend relies on alow-level hash or B-tree
package for its underlying database. This option selects which package it
will use. The currently supported options in order of preference are:

- DLDBM USE_DBBTREE
This option enables the Berkeley DB package btree
database as the LDBM backend. You can get this
package from

ftp://ftp.cs.berkel ey. edu/ uch/4bsd/ db.tar.zZ

- DLDBM USE DBHASH
This option enables the Berkeley DB package hash
database as the LDBM backend. You can get this
package from

ftp://ftp.cs.berkel ey. edu/ uch/4bsd/ db.tar.zZ

- DLDBM_USE_GDBM _
This option enables GNU dbm as the LDBM
backend. Y ou can get this package from

ftp://prep.ai.mt.edu/ pub/gnu/gdbm1.7.3.tar.gz

- DLDBM_USE_NDBM
This option enables the standard UNIX ndbm(3)
package as the LDBM backend. This package should
come standard on your UNIX system. man ndbm
for details.

Example to enable the Berkeley DB Btree backend:
LDBVBACKEND= - DLDBM USE DBBTREE

The defaultis- DLDBM_USE _NDBM sinceit isthe only one available on Al
UNIX systems. NDBM has some serious limitations, though (not thread-
safe, severe size limits), and you are strongly encouraged to use one of the
other packagesif you can.

NOTES TO SOLARIS USERS: If you are running under Solaris 2.x
and linking in an externa database package (e.g., db or gdbm) it is very
important that you compile the package with the - D_REENTRANT flag. If
you do not, bad things will happen.

15

4.1.2

If you are using version 1.85 or earlier of the Berkeley db package, you will
need to apply the patch found in bui |l d/ db. 1. 85. pat ch to the db
source before compiling it. You can do this with a command like this from
the db source area:

patch -p < | dap-source-directory/build/db.1.85.patch

LDBM.I B

This option should only be defined if you have enabled the LDBM backend
as described above, and the necessary library for the LDBMBACKEND option
you chose above is not part of the standard C library (i.e., anything other
than NDBM). This option specifies the library to link containing the
package you selected, and optionally, its location.

Exampletolink with | i bdb. a, containedin/ usr/ | ocal /| i b:
LDBMLI B= -L/usr/local/lib -1db

THREADS

This option is normally set automatically in the Make- pl at f or m file,
based on the platform on which you are building. Y ou do not normally need
to set it. If you want to use a non-default threads package, you can specify
the appropriate - Ddef i ne to enableit here.

THREADSLI B
This option isnormally set automatically in the Make-platform file, based on
the platform on which you are building. Y ou do not normally need to set it.
If you have set THREADS to a non-default threads package as described
above, you can specify the appropriate - Ldirectory flag and
-1 I i bnane flag needed to link the package here.

PHONETI C

This option controls the phonetic agorithm used by dapd when doing
approximate searches. The default is to use the metaphone algorithm. You
can have dapd use the soundex algorithm by setting this variable to
- DSOUNDEX.

Editing the i ncl ude/ | dapconfi g. h file

In addition to setting the LDAPHOST and DEFAULT_BASE defines near the top of
thisfile, there are some dapd-specific defines near the bottom of the file you may
want to change. The defaults should be just fine, unless you have special needs.

SLAPD_DEFAULT_CONFI G-I LE

This define sets the location of the default dapd configuration file.
Normally, itis set to $(ETCDI R) / sl apd. conf , where ETCDI R comes
from Make- common.

16

SLAPD_DEFAULT_SI ZELIM T

This define sets the default size limit on the number of entries returned from
a search. This option is configurable via the tailor file, but if you want to
change the default, do it here.

SLAPD_DEFAULT_TI MELIM T

This define sets the default time limit for a search. This option is
configurable via the tailor file, but if you want to change the default, do it
here.

SLAPD_PI DFI LE

This define sets the location of the file to which dapd will write its process
ID when it starts up.

SLAPD_ARGSFI LE

This define sets the location of the file to which dapd will write its argument
vector when it starts up.

SLAPD MONI TOR DN

This define sets the distinguished name used to retrieve monitoring
information from slapd. See section 7 for more details.

SLAPD LDBM M N_MAXI DS

This define is only relevant to the LDBM backend. It sets the minimum
number of entry IDs that an index entry will contain before it becomes an
allIDs entry. See Section 9.1 for more details.

4.2 Making the Software

Onceyou have edited thei ncl ude/ | dapconfi g. h. edi t file and the Make-
conmon file (see the top level READVE file in the distribution), you are ready to
make the software. From the top level LDAP source directory, type

make

Y ou should examine the output of this command carefully to make sure everything
isbuilt correctly. Note that this command builds the LDAP libraries and associated
clientsaswell as dapd and durpd.

Note that the LDAP distribution can support making for multiple platforms from a
single source tree. If you want to do this, consult the | NSTALL file in the top leve
distribution directory.

4.3 Installing the Software

Once the software has been properly configured and successfully made, you are
ready to install it. You will need to have write permission to the instalation
directories you specified in the Make- conmron file. Typically, the installation is
done as root. From the top level LDAP source directory, type

17

make install

Y ou should examine the output of this command carefully to make sure everything
is installed correctly. Sapd, slurpd, and their configuration files, sl apd. conf,
sl apd. at. conf, and sl apd. oc. conf will be ingdled in the ETCDI R
directory you specified in the Make- common file.

This command will ingtall the entire LDAP distribution. If you only want to ingtall
dapd and durpd, you could do something like this:

(cd servers/slapd; nmake install)
(cd servers/slurpd; make install)

NOTE: The ingtallation process instals configuration files as well as binaries.
Existing configuration files are first moved to a name with a dash '-' appended,
e.g., sl apd. conf is moved to sl apd. conf-. If you ingtall things twice,

however, you can lose your existing configuration files.

18

5. The slapd Configuration File

Once the software has been built and installed, you are ready to configure it for use
a your site. All dapd runtime configuration is accomplished through the
sl apd. conf file, installed in the ETCDIR directory you specified in the Make-

conmon file. An aternate configuration file can be specified via a command-line
option to dapd or durpd (see Sections5 and 8, respectively). This section
describes the general format of the config file, followed by a detailed description of
each config file option.

5.1 Configuration File Format

The sl apd. conf file consists of a series of global configuration options that
apply to dapd as a whole (including al backends), followed by zero or more
database backend definitions that contain information specific to a backend instance.

Global options can be overridden in a backend (for options that appear more than
once, the last appearance in the sl apd. conf file is used). Blank lines and
comment lines beginning with a ‘# character are ignored. If a line begins with
white space, it is considered a continuation of the previous line. The general format
of sl apd. conf isasfollows:

comment - these options apply to every dat abase
<gl obal config options>

first database definition & config options

dat abase <backend 1 type>

<config options specific to backend 1>

second dat abase definition & config options

dat abase <backend 2 type>

<config options specific to backend 2>

subsequent database definitions & config options

Configuration line arguments are separated by white space. If an argument contains
white space, the argument should be enclosed in double quotes “like this’. If an
argument contains a double quote or a backslash character *\', the character should
be preceded by a backdash character “\'.

The digtribution contains an example configuration file that will be installed in the
ETCDI R directory. Also provided are sl apd. at . conf, which contains many
commonly used attribute definitions, and sl apd. oc. conf , which contains many
commonly used object class definitions. These files can be i ncl uded from the
slapd configuration file (see below).

5.2 Configuration File Options

This section separates the configuration file options into global and backend-
specific categories, describing each option and its default value (if any), and giving
an example of its use.

19

5.2.1 Global Options

Options described in this section apply to al backends, unless specificaly
overridden in a backend definition. Option arguments that should be replaced by
actual text are shown in brackets <>.

access to <what> [by <who> <accessl evel >] +

This option grants access (specified by <accesslevel>) to a set of entries
and/or attributes (specified by <what>) by one or more requesters (specified
by <who>). See Section 5.3 on access control for more details and
examples.

attribute <name> [<name2>] { bin | ces | cis | tel | dn}

This option associates a syntax with an attribute name. By default, an
attribute is assumed to have syntax ci s. An optional aternate name can be
given for an attribute. The possible syntaxes and their meanings are

bin binary

ces caseexact string (case must match during comparisons)

cis caseignore string (caseisignored during comparisons)

tel telephone number string (like cis but blanks and dashes ‘-’
are ignored during comparisons)

dn distinguished name

def aul t access { none | conpare | search | read | wite }

This option specifies the default access to grant requesters not matched by
any other access line (see Section 5.3). Note that an access level implies al
lesser access levels (e.g., wite access implies read, search and
conpar e).

Default:
defaul taccess read

i ncl ude <fil ename>

This option specifies that dapd should read additional configuration
information from the given file before continuing with the next line of the
current file. The included file should follow the norma dapd config file
format.

Note: Y ou should be careful when using this option —thereis no small limit
on the number of nested i ncl ude options, and no loop detection is done.

| ogl evel <integer>

This option specifiesthe level at which debugging statements and operation
satistics should be syslogged (currently logged to the syslogd(8)
LOG LOCAL4 facility). You must have compiled dapd with
- DLDAP_DEBUGfor thisto work (except for the two stats levels, which are
aways enabled). Log levels are additive. To display what numbers
correspond to what kind of debugging, invoke dapd with the - ? flag or
consult the table below. The possible valuesfor <i nt eger > are:

20

1 trace function calls

2 debug packet handling

4 heavy trace debuggi ng

8 connect i on managenent

16 print out packets sent and received

32 search filter processing

64 configuration file processing

128 access control |ist processing

256 stats | og connections/operations/results
512 stats log entries sent

1024 print comunication with shell backends
2048 print entry parsing debuggi ng

Example:

| ogl evel 255
Thiswill cause lots and lots of debugging information to be syslogged.
Default:

| ogl evel 256

obj ect cl ass <nane>
[requires <attrs>]
[allows <attrs>]

This option defines the schema rules for the given object class. Used in
conjunction with the schenmacheck option. See Section 5.4 for more
details.

referral <url>
This option specifiesthe referral to pass back when slapd cannot find a loca

database to handle a request.
Example:
referral |dap://ldap.itd.um ch.edu

This will refer non-local queries to the LDAP server a the University of
Michigan. Smart LDAP clients can re-ask their query at that server, but note
that most of these clients are only going to know how to handle smple
LDAP URLSs that contain a host part and optionally a distinguished name
part.

schenmacheck { on| off }

This option turns schema checking on or off. If schema checking is on,
entries added or modified will be checked to ensure they obey the schema
rules implied by their object class(es) as defined by the corresponding
obj ect cl ass option(s). If schema checking is off this check is not done.

Defaullt:
schenacheck of f

21

sizelimt <integer>

This option specifies the maximum number of entries to return from a
search operation.

Default:
sizelimt 500

srvtab <fil ename>

This option specifiesthe sr vt ab file in which dapd can find the kerberos
keys necessary for authenticating clients using kerberos. This option is only
meaningful if you are using kerberos authentication, which must be enabled

a compile time by including the appropriate definitions in the Make-
common file.

Default:
srvtab [etc/srvtab

tinelimt <integer>

This option specifies the maximum number of seconds (in red time) dapd
will spend answering a search request. If a request is not finished in this
time, aresult indicating an exceeded timelimit will be returned.

Default:
tinmelimt 3600

5.2.2 General Backend Options

Options in this section only apply to the backend in which they are defined. They
are supported by every type of backend.

dat abase <dat abaset ype>

This option marks the beginning of a new database instance definition.
<dat abaset ype> should be one of | dobm shell, or passwd,
depending on which backend will serve the database.

Example:
dat abase | dbm
This marks the beginning of a new LDBM backend database instance

definition.
| ast nod { on| off }

This option controls whether dapd will automaticaly maintain the
nodi fi ersNane, nodifyTi mestanp, creatorsNane, and
creat eTi mest anp attributes for entries.

Default:
| ast nod of f

22

readonly { on | off }

This option puts the database into “read-only” mode. Any attempts to
modify the database will return an “unwilling to perform” error.

Default:
readonly off

replica host =<host name>[: <port >]
"bi nddn=<DN\>"
bi ndret hod={ sinple | kerberos }
[credenti al s=<passwor d>]
[srvtab=<fil ename>]

This option specifies a replication dte for this database. The host =
parameter specifies a host and optionally a port where the dave dapd
instance can be found. Either adomain name or |P address may be used for
<host nane>. If <port > isnot given, the standard LDAP port number
(389) is used.

The bi nddn= parameter gives the DN to bind as for updates to the dave
slapd. It should be a DN which has read/write access to the dave dapd's
database, typicaly given as a“r oot dn” in the dave's config file. It must
also match the updat edn option in the dave slapd's config file. Since
DNs are likely to contain embedded spaces, the entire " bi nddn=<DN>"
string should be enclosed in quotes.

bi ndrret hod is ether si npl e or ker ber os, depending on whether
simple password-based authentication or kerberos authentication is to be
used when connecting to the dave slapd. Simple authentication requires a
valid password be given. Kerberos authentication requires a valid srvtab
file.

The cr edent i al s= parameter, which is only required if using smple
authentication, gives the password for bi nddn on the dave slapd.
The srvt ab= parameter, which is only required if using kerberos,

specifiesthe filename which holds the kerberos key for the dave dlapd. If
omitted, / et ¢/ sr vt ab isused.

See Section 10 for more details on replication.

replogfile <fil enanme>
This option specifies the name of the replication log file to which sapd will
log changes. The replication log is typically written by dapd and read by
slurpd. Normally, this option is only used if slurpd is being used to
replicate the database. However, you can also use it to generate a
transaction log, if dlurpd is not running. In this case, you will need to
periodically truncate the file, since it will grow indefinitely otherwise.

See Section 10 for more details on replication.

r oot dn <dn>

This option specifiesthe DN of an entry that is not subject to access control
or administrative limit restrictions for operations on this database.

23

Example:
root dn "cn=Manager, o=U of M c=US"

r oot kr bnane <ker ber osnane>

This option specifies a kerberos name for the DN given above that will
always work, regardless of whether an entry with the given DN exists or
has a krbName attribute. This option is useful when creating a database and
also when using dlurpd to provide replication service (see Section 10).

Example:
r oot kr bnane adm n@m ch. edu

r oot pw <passwor d>

This option specifies a password for the DN given above that will always
work, regardless of whether an entry with the given DN exists or has a
password. This option is useful when creating a database and aso when
using slurpd to provide replication service (see Section 10).

Example:
r oot pw secr et

suffix <dn suffix>

This option specifies the DN suffix of queries that will be passed to this
backend database. Multiple suffix lines can be given, and a least one is
required for each database definition.

Example:
suf fix "o=Uni versity of M chigan, c=US"

QuerieswithaDN endingin“o=Uni versity of M chi gan, c=US"
will be passed to this backend.

Note: when the backend to pass a query to is selected, dapd looks a the
suffix lineg(s) in each database definition in the order they appear in the file.
Thus, if one database suffix isa prefix of another, it must appear after it in
the config file.

updat edn <dn>

Thisoption is only applicable in a dave slapd. It specifies the DN alowed
to make changes to the replica (typicaly, this is the DN durpd binds as
when making changes to the replica).

5.2.3 LDBM Backend-Specific Options

Options in this category only apply to the LDBM backend database. That is, they
must follow a “dat abase | dbni line and come before any other “dat abase”
line.

cachesi ze <integer>

This option specifies the size in entries of the in-memory cache maintained
by the LDBM backend database instance.

24

5.2.4

Default;
cachesi ze 1000

dbcachesi ze <i nt eger >

This option specifies the size in bytes of the in-memory cache associated
with each open index file. If not supported by the underlying database
method, this option is ignored without comment. Increasing this number
uses more memory but can cause a dramatic performance increase,
especially during modifies or when building indexes.

Default;
dbcachesi ze 100000

directory <directory>

i ndex

This option specifies the directory where the LDBM files containing the
database and associated indexes live.

Default:
directory /usr/tnp

{<attrlist> | default} [pres,eq, approx, sub, none]

This option specifies the indexes to maintain for the given attribute. If only
an<attrlist>isgiven, al possibleindexes are maintained.

Example:

i ndex cn
i ndex sn,uid eq, sub, appr ox
i ndex def aul t none

This example causes dl indexes to be maintained for the cn attribute;

equality, substring, and approximate indexes for the sn and ui d attributes;
and no indexes for al other attributes.

node <i nt eger >
This option specifies the file protection mode that newly created database
index files should have.
Default:
node 0600
Shell Backend-Specific Options
bi nd <pat hnane>
unbi nd <pat hnane>
sear ch <pat hnane>
conpar e <pat hnane>
nodi fy <pat hnane>
nmodr dn <pat hnane>
add <pat hnane>
del ete <pat hnane>

abandon <pat hnane>

25

These options specify the pathname of the command to execute in response
to the given LDAP operation. The command given should understand and
follow the input/output conventions described in Appendix B.

Example:
sear ch /usr/ | ocal / bi n/ search. sh

Note that you need only supply those commands you want the backend to
handle. Operations for which a command is not supplied will be refused
with an “unwilling to perform” error.

5.2.5 Password Backend-Specific Options

Optionsin this category only apply to the PASSWD backend database. That is, they
must follow a “dat abase passwd” line and come before any other
“dat abase” line.

file <fil enane>
This option specifies an alternate passwd file to use.
Defaullt:

file /etc/passwd

5.3 Access Control

5.3.1

Access to dapd entries and attributesis controlled by theaccess configuration file
directive. The genera form of anaccess lineis.

<access directive> ::= access to <what >
[by <who> <access>]+
<what> ::= * | [dn=<regex>] [filter=<ldapfilter>]

attrs=<attrlist>]

[
<who> ::= * | self | dn=<regex> | addr=<regex>

domai n=<regex> | dnattr=<dn attri bute>
<access> ::= [self]none | [self]conpare | [self]search

| [self]read | [selflwite

where the <what > part selects the entries and/or attributes to which the access
applies, the <who> part specifies which entities are granted access, and the
<access> part specifies the access granted. Multiple <who> <access> pairs
are supported, allowing many entities to be granted different access to the same set
of entries and attributes.

What to control access to

The <what > part of an access specification determines the entries and attributes to
which the access control applies. Entries can be selected in two ways: by a regular
expression matching the entry’ s distinguished name:

dn=<regul ar expressi on>

NOTE: The DN pattern specified should be "normalized”, meaning that there
should be no extra spaces, and commas should be used to separate components. An

26

5.3.2

example normalized DN is "cn=Babs Jensen, o=University of
M chi gan, c=US". An example of a non-normaized DN is "cn =Babs
Jensen; o=University of M chigan, c=US".

Or, entries may be selected by afilter matching some attribute(s) in the entry:
filter=<ldap filter>

where <l dap filter>isastring representation of an LDAP search filter, as
described in RFC 1588. The specia entry selector “*” is used to select any entry,
and is a convenient shorthand for the equivalent “dn=. *” selector.

Attributes within an entry are selected by including a comma-separated list of
attribute namesin the <what > selector:

attrs=<attribute |ist>

Access to the entry itself must be granted or denied using the specia attribute name
"ent r y". Note that giving accessto an attribute is not enough; access to the entry
itself through the"ent r y" attributeis aso required. The complete examples a the
end of this section should help clear things up.

Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that
accessisgranted to “entities’ not “entries.” Entities can be specified by the specia
“*” jdentifier, matching any entry, the keyword “sel f” matching the entry
protected by the access, or by a regular expresson matching an entry’s
distinguished name:

dn=<r egul ar expressi on>

NOTE: The DN pattern specified should be "normalized”, meaning that there
should be no extra spaces, and commas should be used to separate components.

Or entities can be specified by aregular expression matching the client’s |P address
or domain name:

addr =<r egul ar expressi on>
domai n=<r egul ar expressi on>

or by an entry listed in a DN-valued attribute in the entry to which the access
applies:

dnat tr=<dn-val ued attribute nane>
Thednat t r specification is used to give access to an entry whose DN is listed in

an attribute of the entry (e.g., give access to a group entry to whoever is listed as
the owner of the group entry).

27

5.3.3

5.3.4

5.3.5

The access to grant

The kind of <access> granted can be one of the following:

none | conpare | search | read | wite

Note that each level implies dl lower levels of access. So, for example, granting
someone Wi te access to an entry aso grants them read, search, and
conpar e access.

Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or
attribute, dapd compares the entry and/or attribute to the <what > selectorsgiven in
the configuration file. Access directives loca to the current database are examined
first, followed by global access directives. Within this priority, access directives are
examined in the order in which they appear in the config file. Sapd stops with the
first <what > selector that matches the entry and/or attribute. The corresponding
access directiveisthe one dapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the
access directive selected above, in the order in which they appear. It stops with the
first <who> selector that matches the requester. This determines the access the
entity requesting access has to the entry and/or attribute.

Finally, dapd compares the access granted in the selected <access> clause to the
access requested by the client. If it allows greater or equal access, accessis granted.
Otherwise, accessis denied.

The order of evauation of access directives makes their placement in the
configuration fileimportant. If one access directive is more specific than another in
terms of the entries it selects, it should appear first in the config file. Similarly, if

one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

Access Control Examples

The access control facility described above is quite powerful. This section shows
some examples of its use. First, some simple examples:

access to * by * read

This access directive grants read access to everyone. If it appears aone it is the
same asthefollowing def aul t access line.

def aul t access read

The following example shows the use of a regular expression to select the entries
by DN in two access directives where ordering is significant.

access to dn=".*, o=U of M c=US"
by * search

28

access to dn=".*, c=US"
by * read

Read access is granted to entries under the c=US subtree, except for those entries
under the “o=Uni versity of M chigan, c¢=US" subtree, to which search
access is granted. If the order of these access directives was reversed, the U-M-
specific directive would never be matched, since adl U-M entries are dso c=US
entries.

The next example again shows the importance of ordering, both of the access
directives and the “by” clauses. It also shows the use of an attribute selector to
grant access to a specific attribute and various <who> selectors.

access to dn=".*, o=U of M c¢=US" attr=honePhone

by self wite
by dn=".*, o=U of M c=US" sear ch
by domai n=.*\.um ch\. edu read

by * conpar e

access to dn=".*, o=U of M c=US"

by self wite
by dn=".*, o=U of M c=US" sear ch
by * none

This example applies to entries in the “o=U of M c¢=US" subtree. To dl
attributes except honePhone, the entry itself can write them, other U-M entries
can search by them, anybody else has no access. The honePhone attribute is
writable by the entry, searchable by other U-M entries, readable by clients
connecting from somewhere in the um ch. edu domain, and comparable by
everybody else.

Sometimes it is useful to permit a particular DN to add or remove itsdf from an
attribute. For example, if you would like to create a group and allow people too add
and remove only their own DN from the menber attribute, you could accomplish it
with an access directive like this:

access to attr=menber,entry
by dnattr=nmenber selfwite

Thednattr <who> sdector says that the access applies to entries listed in the
menber attribute. The sel f wri t e access selector says that such members can
only add or delete their own DN from the attribute, not other values. The addition

of theent ry attribute is required because access to the entry is required to access
any of the entry's attributes.

Notethat theat t r =nenber construct in the <what > clause is a shorthand for the
clause "dn=* attr=nenber" (i.e., it maiches the menber attribute in al
entries).

5.4 Schema Enforcement

Theobj ect cl ass and schemacheck configuration file options can be used to
enforce schema rules on entries in the directory. The schema rules are defined by

29

one or more obj ect cl ass lines, and enforcement is turned on or off via the
schemacheck option. Theformat of an obj ect cl ass lineis:.

obj ect cl ass <nane>
[requires <attrs>]
[allows <attrs>]

This option defines the schema rules for the object class given by <nane>. Schema
rules consist of the attributes the entry isrequired to have (given by the r equi r es
<attrs> clause) and those attributes that it may optionaly have (given by the
al | ows <attr s> clause). In both clauses, <att r s> is a comma-separated list
of attribute names.

Note that object class inheritance (that is, defining one object class in terms of
another) is not supported directly. All of an object class's required and alowed
attributes must be listed in the obj ect cl ass definition.

For example, to define an objectclass called myPerson, you might include a
definition like this:

obj ect cl ass nyperson
requires cn, sn, objectclass
al | ows mai | , phone, fax

To then enforce this rule (i.e.,, to make sure an entry with an objectclass of
nmyper son containsthecn, sn and obj ect cl ass attributes, and that it contains
no other attributes besidesmai | , phone, and f ax), turn on schema checking with
alinelikethis:

schenmacheck on

5.5 Configuration File Example

Thefollowing is an example configuration file, interspersed with explanatory text.
It defines two databases to handle different parts of the X.500 tree; both are LDBM
database instances. The line numbers shown are provided for reference only and are
not included in the actual file. First, the global configuration section:

1. # exanple config file — global configuration section
2. include /usr/local/etc/slapd. at. conf

3. include /usr/local/etc/slapd. oc. conf

4. schemacheck on

5. referral | dap://1dap.itd.um ch. edu

Line 1 is a comment. Lines 2 and 3 include other config files containing attribute
and object class definitions, respectively. Line 4 turns on schema checking. The
referral option on line 5 means that queries not loca to one of the databases
defined below will be referred to the LDAP server running on the standard port
(389) at thehost | dap.itd. um ch. edu.

The next section of the configuration file defines an LDBM backend that will handle

queries for things in the “o=Uni versity of M chi gan, c¢=US" portion of
the tree. The database is to be replicated to two dave slapds, oneont r uel i es,

30

the other on j udgnent day. Indexes are to be maintained for severa attributes,
and theuser Passwor d attribute isto be protected from unauthorized access.

1. # dbmdefinition for the U M dat abase

2. dat abase [dbm

3. suffix "o=Uni versity of M chigan, c=US"

4. directory fusr/local/ldbmunich

6. rootdn "cn=Manager, o=University of M chigan, c=US"
7. rootpw secr et

8. replogfile /usr/ 1 ocal /Il dbm um ch/ sl apd. repl og

9. replica host=truelies.rs.itd.umch. edu: 389

10. bi nddn="cn=Replicator, o=U of M c¢c=US"
11. bi ndrret hod=si npl e credenti al s=secret
12.replica host =j udgnment day. rs.itd. umi ch. edu

13. bi nddn="cn=Replicator, o=U of M c¢c=US"
14. bi ndrret hod=ker ber os

15. srvtab=/ et ¢/ srvtab. j udgnent day

16. # | dbmindexed attribute definitions

17. i ndex cn,sn, uid pr es, eq, appr ox, sub

18. i ndex obj ectcl ass pres, eq

19. i ndex def aul t none

20.# | dbm access control definitions

21. def aul taccess read

22.access to attr=userpassword

23. by self wite

24. by dn="cn=Adni n, o=University of Mchigan, c=US" wite
25. by * conpare

Line 1isacomment. The start of the database definition is marked by the database
keyword on line 2. Line 3 specifies the DN suffix for queries to pass to this
database. Line 4 specifies the directory in which the database files will live

Lines 6 and 7 identify the database “super user” entry and associated password.
Thisentry is not subject to access control or size or time limit restrictions.

Lines 8 through 15 are for replication. Line 8 specifies the replication log file
(where changes to the database are logged — thisfile is written by dapd and read by
durpd). Lines 9 through 11 specify the hosthame and port for areplicated host, the
DN to bind as when performing updates, the bind method (smple) and the
credentias (password) for the binddn. Lines 12 through 15 specify a second
replication site, using kerberos instead of simple authentication. See Section 10 on
dlurpd for more information on these options.

Lines 16 through 19 indicate the indexes to maintain for various attributes. The
default is not to maintain any indexes (line 19).

Lines 20 through 25 specify access control for entries in the database. For dl
entries, the user Passwor d attribute is writable by the entry and the “admin”
entry, comparable by everyone else. All other attributes allow read access by default
(line 21). Note that the special "ent r y" attribute is not required in the access
directive beginning on line 22. Thisis because the default access is read.

The next section of the example configuration file defines another LDBM database.
Thisone handles queriesinvolving the“o="Babs, Inc.", c¢=US" subtree.

31

1
2
3.
4.
5
6

| dom definition for Babs, Inc. database

dat abase
suffix
directory
root dn

i ndex

| dbm

"o=\"Babs, Inc.\", c=US"
/usr/local /| dbm babs

"cn=Babs, o=\"Babs, Inc.\", c=US"
def aul t

Note the use of *\' to escape the quotes necessary in the distinguished names given
on lines 3 and 5. By default, al indexes are maintained for every attribute in an

entry.

32

6. Running slapd

Sapd can be run in two different modes, stand-alone or from inetd(8). Stand-alone
operation is recommended, especialy if you are using the LDBM backend. This
allows the backend to take advantage of caching and avoids concurrency problems
with the LDBM index files. If you are running only a PASSWD or SHELL
backend, running from inetd is an option. How to do this is described in the next
section, after the command-line options and stand-alone daemon operation are
described.

6.1 Command-Line Options

Sapd supports the following command-line options.

-d

<level>| ?

This option sets the dapd debug levd to <I evel >. When leve isa‘?’
character, the various debugging levels are printed and dapd exits,
regardless of any other options you give it. Current debugging levels are

1 trace function calls

2 debug packet handl i ng

4 heavy trace debuggi ng

8 connect i on managemnent

16 print out packets sent and received
32 search filter processing

64 configuration file processing

128 access control |ist processing

256 stats | og connections/operations/results
512 stats log entries sent

1024 print comunication with shell backends
2048 print entry parsing debuggi ng

65535 enabl e al | debuggi ng

Debugging levels are additive. That is, if you want to trace function calls
and watch the config file being processed, you would set level to the sum of
those two levels (in this case, 65). Consult <I dap. h> for more details.

Note that dlapd must have been compiled with - DLDAP_DEBUG defined for
any debugging information beyond the two stats levels to be available.

<fil enane>
This option specifies an alternate configuration file for dapd.

This option tells dapd that it is running from inetd instead of as a stand-
alone server. See the next section on running dapd from inetd for more
details.

<port>

This option specifies an aternate TCP port on which dapd should listen for
connections. The default port is 389.

33

6.2 Running slapd as a Stand-Alone Daemon

In general, dapd isrun likethis:
$(ETCDI R)/ sl apd [<option>] *

where ETCDI R has the value you gave in the Make- comrmon file during the pre-
build configuration, and <opt i on> isone of the options described below. Unless
you have specified a debugging level, dapd will automatically fork and detach itself
from its controlling termina and run in the background. Any of the options given
above can be given to dapd to point it a a different configuration file, listen on
another port, etc.

To kill off dapd safely, you should give acommand like this
kill -TERM “cat $(ETCDI R)/sl apd. pi d’

Killing dapd by a more drastic method may cause its LDBM databases to be
corrupted, as it may need to flush various buffers before it exits. Note that dapd
writesitspid to afile called sl apd. pi d inthe ETCDI Ryou configured in Make-
comon. You can change the location of this pid file by changing the
SLAPD PI DFI LE variableini ncl ude/ | dapconfig. h.edit.

Sapd will also write its arguments to afile caled sl apd. ar gs in the ETCDI R
you configured in Make- conmon. Y ou can change the location of the args file by
changing the SLAPD_ARGSFI LE variableini ncl ude/ | dapconfi g. h. edit.

6.3 Running slapd from inetd

First, make sure that running from inetd(8) is a good idea. If you are using the
LDBM backend, it isnot. If you are in a high-volume environment, the overhead of
running from inetd also makesit a bad idea. Otherwise, you may proceed with the
two steps necessary.
Step listoadd alinelikethistoyour / et ¢/ ser vi ces file:

| dap 389 # |l dap directory service
Step 2isto add alinelikethistoyour / et ¢/ i net d. conf file

| dap streamtcp nowait nobody $(ETCDI R)/slapd slapd -i

where ETCDI R has the value you gave it in the Make- common file during pre-
build configuration. Finally, send inetd aHUP signal, and you should be all set.

7. Monitoring Slapd

Sapd supports a monitoring interface you can use to find out many useful bits of
information about what slapd is currently doing, how many connectionsit has, how
many threads are working, etc. Y ou can access the monitor festure by doing a base
object search of the SLAPD MONI TOR DN from i ncl ude/ | dapconfi g. h
with any kind of valid filter (e.g., "(obj ect cl ass=*) "). By default, this DN is
set tg "cn=noni t or". You will get one entry returned to you, with the following
attributes:

version: slapd <version> (<date>)

This attribute identifies the dapd server software by name, version, and
build date, e.g., sl apd 3.3 (Thu May 21 14:19: 03 EDT 1996)

t hreads: <integer>

This atribute indicates the number of threads (operations) currently
outstanding in slapd.

connection: <fd> : <opentinme> : <opsinitiated> :
<opsconpl eted> : <binddn> : [<rw>]

This multi-valued attribute summarizes information for each open
connection. The information given is <fd>, the file descriptor;
<openti nme>, the time the connection was opened in UTC format;
<opsi nitiated>, the number of operations initiated over the
connection; <opsconpl et ed>, the number of operations completed over
the connection; <bi nddn>, the DN currently bound to the connection; and
optionally <r w>, indicating whether the connection is currently blocked for
read or write..

current connections: <integer>
The current number of connections.

t ot al connecti ons: <integer>
Thetotal number of connections handled by dapd since it started.

dt abl esi ze: <integer>
The size of dapd'sfile descriptor table.

witewaiters: <integer>
The number of threads blocked waiting to write datato a client.

readwai ters: <integer>
The number of threads blocked waiting to read data from aclient.

opsinitiated: <integer>
Thetotal number of operations initiated by dapd sinceit started.

35

opsconpl et ed: <i nteger>
The total number of operations completed by dapd since it started.

entriessent: <integer>
Thetotal number of entries sent to clients by dapd sinceit started.

byt essent: <integer>
Thetotal number of bytes sent to clients by slapd since it started.

currenttinme: <UTC tinme>
Sapd'sidea of the current time.

starttine: <integer>
The time dapd was started.

nbackends: <integer>
The number of backends currently being served by slapd.

concurrency: <integer>

Under Solaris 2.x only, an indication of the current level of thread
concurrency.

Note that dapd takes a snapshot of this information and returns it to you. No
attempt is made to ensure that the information is consistent (i.e., if an operation
thread is modifying one of these things when the monitor thread is reading it,
strange results could be returned).

Y ou should be able to use any LDAP client to retrieve thisinformation. Here's how
you might do it using the Idapsearch(1) client:

| dapsearch -s base -b cn=nonitor 'objectclass=*'

36

8. Database Creation and Maintenance Tools

This section tells you how to create a dapd database from scratch, and how to do
trouble shooting if you run into problems. There are two ways to creste a database.
First, you can create the database on-line using LDAP. With this method, you
simply start up dapd and add entries using the LDAP client of your choice. This
method is fine for relatively small databases (a few hundred or thousand entries,
depending on your requirements).

The second method of database creation is to do it off-line, using the index
generation tools. This method is best if you have many thousands of entries to

create, which would take an unacceptably long time using the LDAP method, or if
you want to ensure the database is not accessed whileit is being created.

8.1 Creating a database over LDAP

With this method, you use the LDAP client of your choice (e.g., the Idapadd(1)
tool) to add entries, just like you would once the database is created. Y ou should be
sure to set the following configuration options before starting sapd:

suf fix <dn>
As described in the preceding section, this option says what entries are to be held
by this database. You should set this to the DN of the root of the subtree you are
trying to create. For example
suffix "o=University of M chigan, c=US"
Y ou should be sure to specify adirectory where the index files should be created:
directory <directory>
For example:

directory /usr/local/um ch-slapd

Y ou need to make it so you can connect to dapd as somebody with permission to
add entries. This is done through the following two options in the database

definition:
root dn <dn>
r oot pw <passwd>

These options specify a DN and password that can be used to authenticate as the
“superuser” entry of the database (i.e., the entry alowed to do anything). The DN
and password specified here will always work, regardiess of whether the entry
named actualy exists or has the password given. This solves the chicken-and-egg
problem of how to authenticate and add entries before any entries yet exist.

Finally, you should make sure that the database definition contains the index
definitions you want:

37

i ndex {<attrlist> | default} [pres, eq, approx, sub, none]

For example, to index the cn, sn, uid and obj ectcl ass attributes the
following index configuration lines could be used.

i ndex cn, sn, ui d
i ndex obj ectcl ass pres, eq
i ndex def aul t none

See Section 4 on the configuration file for more details on this option. Once you
have configured things to your liking, start up slapd, connect with your LDAP
client, and start adding entries. For example, to add athe U of M entry followed by
a Postmaster entry using the Idapadd tool, you could create a file caled
/ t np/ newent r y with the contents:

o=Uni versity of M chigan, c=US

obj ect Cl ass=or gani zati on

o=Uni versity of M chigan

description=Uni versity of Mchigan at Ann Arbor

cn=Post naster, o=University of M chigan, c=US

obj ect Cl ass=or gani zat i onal Rol e

cn=Post nast er

description=U of M postmaster - postmaster @mni ch. edu

and then use acommand like this to actually create the entry:

| dapadd -f /tnp/newentry -D "cn=Manager, o=University of
M chi gan, c=US" -w secret

The above command assumes that you have set r oot dn to “cn=Manager,
o=Uni versity of M chigan, c=US" andr oot pwto“secret”.

8.2 Creating a database off-line

The second method of database creation is to do it off-line, using the index
generation tools described below. Thismethod is best if you have many thousands
of entries to create, which would take an unacceptably long time using the LDAP
method described above. These tools read the dapd configuration file and an input
file containing a text representation of the entries to add. They produce the LDBM
index files directly. There are severa important configuration options you will want
to be sure and set in the config file database definition first:

suffix <dn>
As described in the preceding section, this option says what entries are to be held
by this database. You should set this to the DN of the root of the subtree you are
trying to create. For example

suf fix "o=Uni versity of M chigan, c=US"
Y ou should be sure to specify a directory where the index files should be created:

directory <directory>

38

8.2.1

For example:

directory /usr/local/um ch-slapd

Next, you probably want to increase the size of the in-core cache used by each open
index file. For best performance during index creation, the entire index should fit in
memory. If your datais too big for this, or your memory too small, you can ill
make it pretty big and let the paging system do the work. This size is set with the
following option:

dbcachesi ze <i nt eger >

For example:

dbcachesi ze 50000000

Thiswould create a cache 50 MB big, which is pretty big (at U-M, our database has
about 125K entries, and our biggest index file is about 45 MB). Experiment with
this number a bit, and the degree of paralelism (explained below), to see what
works best for your system. Remember to turn this number back down once your
index files are created and before you run slapd.

Finally, you need to specify which indexes you want to build. This is done by one
or more index options.

i ndex {<attrlist> | default} [pres, eq, approx, sub, none]
For example:

i ndex cn,sn,uid pr es, eq, appr ox

i ndex def aul t none

Thiswould create presence, equality and approximate indexes for the cn, sn, and
ui d attributes, and no indexes for any other attributes. See the configuration file
section for more information on this option.

The Idif2ldbm program

Once you' ve configured things to your liking, you create the indexes by running the
[dif2ldbm program:

[dif2ldbm-i <inputfile> -f <slapdconfigfile>
[-d <debugl evel >] [-] <integer>]
[-n <dat abasenunber>] [-e <etcdir>]
The arguments have the following meanings:
-1 <inputfile>

Specifies the LDIF input file containing the entries to add in text form (described
below in Section 8.3).

-f <sl apdconfigfil e>

39

8.2.2

Specifies the dapd configuration file that tells where to create the indexes, what
indexesto cresate, etc.

-d <debugl evel >

Turn on debugging, as specified by <debugl evel >. The debug levels are the
same as for slapd (see Section 6.1).

-j <i nt eger >

An optional argument that specifies that a most <i nt eger > processes should be
started in parald when building the indexes. The default is 1. If set to a vaue
greater than one, Idif2ldbm will create a most that many subprocesses a a time
when building the indexes. A separate subprocess is created to build each attribute
index. Running these processesin paralel can speed things up greatly, but beware
of creating too many processes, al competing for memory and disk resources.

-n <dat abasenunber >

An optional argument that specifies the configuration file database for which to
build indices. The first database listed is "1", the second "2", etc. By default, the
first | dbmdatabase in the configuration file is used.

-e <etcdir>

An optiona argument that specifies the directory where | di f 21 dbmcan find the
other database conversion tools it needs to execute (I di f 2i ndex and friends).
The default istheinstallation ETCDI R

The next sections describe the programs invoked by Idif2ldbm when it is building
indexes. Normally, these programs are invoked for you, but occasionally you may
want to invoke them yourself.

The Idif2index program

Sometimes it may be necessary to create a new attribute index file without
disturbing the rest of the database. This is possible using the Idif2index program.
Idif2index isinvoked like this

[di f2index -i <inputfile> -f <slapdconfigfile>
[-d <debugl evel >] [-n <databasenunber>] <attr>

Wherethe-i,-f,-d, and- n options arethe same asfor the Idif2ldom program.
<attr> is the attribute to build an index for. Which indexes are built (e.g.,
equality, substring, etc.) is controlled by the corresponding i ndex linein the dapd
configuration file.

You can use the ldbmcat program to create a suitable LDIF input file from an
existing LDBM database.

40

8.2.3

8.2.4

8.2.5

8.2.6

The |dif2id2entry program

The Idif2id2entry program is normally invoked from Idif2ldbm. It is used to
convert an LDIF text fileinto an i d2ent ry index. It is unlikely that you would
need to invoke it yourself, but if you do it workslike this

[dif2id2entry -i <inputfile> -f <slapdconfigfile>
[-d <debugl evel >] [-n <dat abasenunber >]

The arguments are the same as for the Idif2ldbm program.

The Idif2id2children program

The Idif2id2children program is normally invoked from ldif2ldbm. It is used to
convert an LDIF text fileintoi d2chi | dr en and dn2i d indexes. Occasionaly, it
may be necessary to run this program yourself, for example if one of these indexes
has become corrupted. Idif2id2children isinvoked like this

I di f2id2children -i <inputfile> -f <slapdconfigfile>
[-d <debugl evel >] [-n <dat abasenunber >]

The arguments are the same as for the ldif2ldom program. Y ou can use the Idbmcat
program to create a suitable LDIF input file from an existing LDBM database.

The Idbmcat program

The Idbmcat program is used to convert ani d2ent ry index back into its LDIF
text format. This can be useful when you want to make a human-readable backup of
your database, or as an intermediate step in creating a new index using the
Idif2index program. The program isinvoked like this:

| dbntat [-n] <fil enane>

where<f i | enanme> isthenameof the i d2ent ry index file. The corresponding
LDIF output is written to standard output.

The - n option can be used to prevent the printing of entry I1Ds in the LDIF format.
If you are creating an LDIF format for use as input to Idif2index or anything by
[dif2ldbm, you should not use the - n option (because the entry 1Ds must match
those already inthei d2ent ry file). If you are just making a backup of your data,
you can use the - n option to save space.

The Idif program

The ldif program isused to convert arbitrary data values to LDIF format. This can
be useful when writing a program or script to create the LDIF file you will feed into
the Idif2ldom program, or when writing a SHELL backend. Idif takes an attribute
name as an argument, and reads the attribute valug(s) from standard input. It
produces the LDIF formatted attribute line(s) on standard output. The usage is:

[dif [-b] <attrname>

41

where <at t r name> is the name of the attribute. Without the - b option, Idif
considers each line of standard input to be a separate value of the attribute.

The - b option can be used to force Idif to interpret its input as a single raw binary
value. Thisoption is useful when converting binary data such as aj pegPhot o or
audi o attribute.

8.3 The LDIF text entry format

The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a
simpletext format. The basic form of an entry is:

[<i d>]

dn: <di sti ngui shed nane>
<attrtype>: <attrval ue>

<attrtype>: <attrval ue>

where <i d> is the optiona entry ID (a positive decima number). Normally, you
would not supply the <i d>, allowing the database creation tools to do that for you.
The Idbmcat program, however, produces an LDIF format that includes <i d> so
that new indexes created will be consistent.

A line may be continued by starting the next line with a single space or tab
character. e.g.,

dn: cn=Barbara J Jensen, o=University of M chi
gan, c=US

Multiple attribute values are specified on separate lines. e.g.,

cn: Barbara J Jensen
cn: Babs Jensen

If an <at t r val ue> contains a non-printing character, or begins with a space or a
colon‘’, the<at t rt ype> isfollowed by adouble colon and the value is encoded
in base 64 notation. e.g., the vdue “ begins with a space” would be
encoded likethis:

cn:: | Gl Z21 ucyB3aXRol GEgc3BhY2U=

Multiple entries within the same LDIF file are separated by blank lines. Here's an
example of an LDIF file containing three entries.

dn: cn=Barbara J Jensen, o=University of M ch
gan, c=US

cn: Barbara J Jensen

cn: Babs Jensen

obj ectcl ass: person

sn: Jensen

dn: cn=Bjorn J Jensen, o=University of M chi

42

gan, c=US

cn: Bjorn J Jensen
cn: Bjorn Jensen
obj ect cl ass: person
sn: Jensen

dn: cn=Jennifer J Jensen, o=University of Mch
gan, c=US

cn: Jennifer J Jensen

cn: Jennifer Jensen

obj ect cl ass: person

sn: Jensen

j pegPhot 0: : /9j / 4AAQSkZIRgABAAAAAQABAALY 2WBDABAL D
AAMCh ACDA SERATGCgaGBYWEDE] JRO0G MBPDkz ODAASFX OQ
ERXRTc4UGLRV19i Z2hnPk 1xeXBkeFx| Z2P/ 2wBDARESEhgVG

Notice that the j pegPhot o in Jennifer Jensen’s entry is encoded using base 64.
The Idif program (described in Section 8.2.6) can be used to produce the LDIF
format.

NOTE: Trailing spaces are not trimmed from values in an LDIF file. Nor are
multiple internal spaces compressed. If you don't want them in your data, don't put
them there.

8.4 Converting from QUIPU EDB format to LDIF format

8.4.1

If you have directory datathat isor was held in aQUIPU DSA (available as part of
the ISODE package), you will want to convert the EDB files used by QUIPU into
an LDIF file. The edb2ldif program is provided to do most of the conversion for
you. Onceyou have an LDIF file, you should follow the steps outlined in section
6.2 above to build an LDBM database for dapd.

The edb2Idif program

The edb2ldif program isinvoked like this:

edb2ldif [-d] [-v] [-r] [-0] [-b <basedn>]
[-a <addval sfile>] [-f <fileattrdir>]
[-i <ignhoreattr...>] [<edbfile...>]

The LDIF data is written to standard output. The arguments have the following
meanings.

-d
This option enables some debugging output on standard error.

Enable verbose mode that writes status information to standard error, such
as which EDB file is being processed, how many entries have been
converted so far, etc.

43

Recurse through child directories, processing al EDB files found.

Cause locd . add file definitions to override the global addfile (see -a
below)

-b <basedn>
Specify the Distinguished Name that all EDB file entries appear below.

-a <addval sfil e>
The LDIF information contained in this file will be appended to each entry.

-f <fileattrdir>

Specify a single directory where dl file-based attributes (typically sounds
and images) can be found. If this option is not given, file attributes are
assumed to be located in the same directory as the EDB file that refers to
them.

-i <ignoreattr>

Specify an attribute that should not be converted. You can include as many
- I flags as necessary.

<edbfil e>

Specify a particular EDB file (or files) to read data from. By default, the
EDB. r oot (if it exists) and EDB filesin the current directory are used.

When edb2Idif isinvoked, it will also look for files named . add in the directories
where EDB files are found and append the contents of the . add file to each entry.
Typically, this feature is used to include inherited attribute values (e.g.,
objectClass) that do not appear in the EDB files.

8.4.2 Step-by-step EDB to LDIF conversion

The basic steps to follow when converting your EDB format data to an LDIF file
are
1. Locate the directory at the top of the EDB file hierarchy that your QUIPU
DSA masters. The EDB filelocated there should contain the entries for the
first level of your organization or organizational unit. If you are using an
indexed database with QUIPU, you may need to create EDB files from your
index files (using the synctree or gb2edb tools).

2. If you do not have a file named EDB. r oot in the same directory that
contains your organizationa or organizational unit entry, create it now by
hand. Its contents should look something like this:

MASTER
000001

o=Uni versity of M chigan

44

obj ect ass= top & organi zati on & donmmi nRel at edbj ect &\
gui punj ect & qui puNonLeaf Ohj ect

| = Ann Arbor, M chigan

st= M chi gan

o= University of Mchigan & UMCH & UM& UM & U of M

description= The University of Mchigan at Ann Arbor

associ at edDomai n= uni ch. edu

mast er DSA= c=US@n=Wol | y Monkey

3. (Optional) Create a globa add file and/or loca . add files to take care of
adding any attribute values that do not appear in the EDB files. For
example, if al entriesin aparticular EDB are person entries and you want to
add the appropriate objectClass attribute value for them, create a file called
. add in the same directory asthe person EDB that containsthe singleline:

obj ect d ass: person

4. Run the edb2ldif program to do the actual conversion. Make sure you arein
the directory that contains the root of the EDB hierarchy (the one where the
EDB. r oot fileresides). Include a-b flag with a base DN one level above
your organizational entry, and include -i flags to ignore any attributes that
are not useful to slapd. E.g., the command:

edb2ldif -v -r -b "c=US" -i iattr -i acl -i xacl -i sacl
-i lacl -i nasterDSA -i slaveDSA > Idif
will convert the entire EDB hierarchy to LDIF format and write the result to
afilenamed| di f . Some attributes that are not useful when running sapd

areignored. The EDB hierarchy is assumed to reside logically below the
base DN "c=US".

5. Follow the steps outlined in section 8.2 above to produce an LDBM
database from your new LDIF file.

8.5 The Idbmtest program

Occasiondly you may find it useful to look a the LDBM database and index files
directly (i.e., without going through slapd). The Idbmtest program is provided for
this purpose. It gives you raw access to the database itself. |dbmtest should be run
linethis:

| dbntest [-d <debugl evel >] [-f <slapdconfigfil e>]

The default configuration file in the ETCDI R is used if you don't supply one. By
default, |dbmtest operates on the last database listed in the config file. You can
specify an dternate database, or see the current database with the following
commands.

b specify an aternate backend database
B print out the current backend database

The b command will prompt you for the suffix associated with the database you
want. The database you select can be viewed and modified using a set of two-letter
commands. The first letter selects the command function to perform. Possible
commands and their meanings are as follows.

45

lookup (do not follow indirection)
lookup (follow indirection)
traverse and print keys and data
traverse and print keys only
delete an index item

edit an index item

add an index item

create an index file

insert an entry into an index item

—“ 0 DX 4~ ——

The second letter indicates which index the command applies to. The possible index
selections are as follows.

id2children index
dn2id index
id2entry index
arbitrary file name
attribute index

e N)

Each command may require additional arguments which Idbmtest will prompt you
for.

To exit Idomtest, typecont rol - Dorcontrol - C.

Note that thisis avery raw interface originally developed when testing the database
format. It is provided and minimally documented here for interested parties, but it is
not meant to be used by the inexperienced. See the next section for a brief
description of the LDBM database format.

8.6 The LDBM database format

8.6.1

In normal operation, it is not necessary for you to know much about the LDBM
database format. If you are going to use the ldbmtest program to look at or dter the
database, or if you want a deeper understanding of how indexes are maintained,
some knowledge of how it works could be useful. This section gives an overview
of the database format and how slapd makes use of it.

Overview

The LDBM database works by assigning a compact four-byte unique identifier to
each entry in the database. It uses this identifier to refer to entries in indexes. The
database consists of one main index file, called i d2ent r y, which maps from an
entry's unique identifier (EID) to a text representation of the entry itself. Other
index files are maintained, for each indexed attribute for example, that map values
people are likely to search on to lists of EIDs.

Using this smple scheme, many LDAP queries can be answered efficiently. For
example, to answer a search for entries with a surname of “Jensen”, dapd would
first consult the surname attribute index, look up the value “ Jensen” and retrieve the
corresponding list of EIDs. Next, slapd would look up each EID in thei d2ent ry
index, retrieve the corresponding entry, convert it from text to LDAP format, and
return it to the client.

46

8.6.2

8.6.3

The following sections give avery brief overview of each type of index and what it
contains. For more detailed information see the paper “An X.500 and LDAP
Database: Design and Implementation,” available in postscript format from

ftp://termnator.rs.itd.um ch. edu/l dap/ papers/ x| dbm ps

Attribute index format

The LDBM backend will maintain one index file for each attribute it is asked to
index. Several sets of keys must coexist in this file (e.g., keys for equaity and
approximate equality), so the keys are prefixed with a character to ensure
uniqueness. The prefixes are given in the table below

= equality keys

~ approximate equality keys
* substring equality keys

\ continuation keys

Key values are also normalized (e.g., converted to upper case for case ignore
attributes). So, for example, to look up the surname equality value in the example
above using the ldbmtest program, you would look up the value “=JENSEN".

Substring indexes are maintained by generating al possible N-character substrings
for avalue (N is 3 by default). These substrings are then stored in the attribute
index, prefixed by “*”. Additiona anchors of “A” and “$” are added a the
beginning and end of words. So, for example the surname of Jensen would cause
the following keysto be entered in theindex: *JE, JEN, ENS, NSE, SEN, ENS.

Approximate vaues are handled in a similar way, with phonetic codes being
generated for each word in avalue and then stored in the index, prefixed by “~".

Large blocks in the index are split into smaler ones. The smaler blocks are
accessed through a level of indirection provided by the origina block. They are
stored in the index using the continuation key prefix of “\ ”.

Other indexes

In additiontothe i d2ent ry and attribute indexes, LDBM maintains a number of
other indexes, including the dn2i d index and the i d2chi | dr en index. These
indexes provide the mapping between a DN and the corresponding EID, and the
mapping between an EID and the EIDs of the corresponding entry’s children,
respectively.

The dn2i d index stores normdized DNs as keys. The data stored is the
corresponding EID.

Theid2children index stores EIDs as keys. The datastored isa list of EIDs, just as
for the attribute indexes.

47

9. Performance Tuning

There are several things you can do to tune the performance of dapd for your
system. Most of them have to do with the LDBM backend. LDBM uses an index
mechanism to store and retrieve information in slapd. Each entry is assigned a
unique ID, used to refer to the entry in the indexes. A search for entries with a
surname of “Jensen”, for example, would look up the index entry “=JENSEN”" in
the surname index. The datareturned isalist of IDs of entries having that value for
the surname attribute. We have found several things to be useful in improving the
performance of thisindexing scheme, especially on modify operations.

9.1 The alllDs threshold

Some index entries become so large as to be useless. For example, if every entry in
your database is a person entry, the “=PERSON” index entry in the objectclass
index contains every entry. This returns very little useful information, and can
cause significant delays, especially on updates. To dleviate this problem, we have
introduced the idea of an alllDsindex entry.

ThealllDs entry stands for a red index entry containing the IDs of every entry in
the database, but it takes up very little space, never needs updating, and can be
manipulated quickly and efficiently. The trade-off isthat it does not prune the set of
candidate entries at all during a search. This must be done using other, more “high-
powered” index entries.

Y ou can set the minimum number of 1Ds that an index entry may contain before it
turns into an alllDs block by changing the SLAPD _LDBM M N_MAXI DS variable
in the i ncl ude/ I dapconfi g. h file. The actud number is determined &
runtime by the LDBM backend, depending on the block size of the underlying
device (i.e., the number you provide is rounded up to the nearest multiple of a
block size).

9.2 The entry cache

The LDBM backend can be configured to keep a cache of entries in memory. Since
the LDBM database spends much of its time reading entries from the i d2entry
fileinto memory, this cache can grestly speed performance. The trade-off is that the
cache uses some extra memory. The default cache size is 1000 entries. See the
discussion of thecachesi ze option in Section 5.2.3 on LDBM configuration.

9.3 The DB cache

The LDBM backend uses a number of disk-based index files. If the underlying
hash or B-tree package supports in-memory caching of these files, performance can
be greatly improved, especially on modifies. The size of this in-memory file cache
isgiven by thedbcachesi ze option, discussed in more detail in section 5.2.3 on
LDBM configuration. The default dbcachesi ze is100K.

48

9.4 Maintain the right indices

Finally, one of the best performance tune-ups you can do is to make sure you are
maintaining the right indices. Too few indices can lead to poor search performance.
Too many indices can lead to poor update performance. For example, the LDBM
backend would be perfectly happy to maintain substring and approximate indices
for the obj ect cl ass attribute, but thiswould not be useful and would just slow
down update operations. If your database has many entries and is handling queries
for substring equality on the surname attribute, you should make sure to maintain a
surname substring index so these queries are answered quickly.

So, take alook at the i ndex lines in your dapd configuration file to ensure that
only those indices that make sense and are needed are being maintained.

49

10. Distributing s/apd DATA

For many sites, running one or more slapds that hold an entire subtree of data is
sufficient. But sometimesit may be desirable to have one dlapd refer to other dapds
for acertain part of the tree. This can be accomplished by creating areferral entry in
one slapd's database pointing to another slapd. For those familiar with X.500, a
dapd referral entry issimilar to an X.500 knowledge reference.

The referral entry acts as a mount point, glueing two slapd databases together. A
referral entry has an objectclass of "referral” and is named by a ref atribute
containing a URL pointing to the dapd holding the data below the mount point.
This mechanism is very general and allows sapd databases that are not normally
hierarchical to be grafted together.

An example should help illustrate things. Suppose your company is running a dapd
and just purchased a new company, also running a slapd. You can easily connect
the two databases by creating an entry like thisin your slapd's database.

dn: ref="I1dap://new host/o=New Conpany, c=US", o=Your
conpany, c¢=US
obj ectclass: referral

Now any subtree search that has this entry in its scope will return a referra to the
new company, in addition to any entries matched in your database. Referra-aware
clientswill continue the search at the new company's server.

A mechanism similar to this is used to support distributed indexing, described in
Appendix C.

50

11. Replication with slurpd

11.1

11.2

In certain configurations, a single dapd instance may be insufficient to handle the
number of clients requiring directory service viaLDAP. It may become necessary to
run more than one dapd instance. At the University of Michigan, for instance, there
are four dapd servers, one master and three slaves. A DNS lookup of the name
| dap.itd.um ch. edu returns the IP addresses of those four servers,
distributing the load among them. This master/dave arrangement provides a smple
and effective way to increase capacity, availability and reiability.

Surpd provides the capability for a master dapd to propagate changes to dave
dapd instances, implementing the master/dave replication scheme described above.
Surpd runs on the same host as the master slapd instance.

Overview

Surpd provides replication services “in band”. That is, it uses the LDAP protocol
to update a dave database from the master. Perhaps the easiest way to illustrate this
iswith an example. In this example, we trace the propagation of an LDAP modify
operation from itsinitiation by the LDAP client to its distribution to the dave dapd
instance.

Sample replication scenario:

Stepl: AnLDAPclient starts up and connectsto adlave dapd.

Step2: The LDAP client submits an LDAP modify operation to the dave
slapd.

Step3: Thedave dapd returns a referral to the LDAP client, which causes
the client to send the modify operation to the master dapd.

Step4: The master dapd performs the modify operation, writes out the
change to its replication log file and returns a success code to the
client.

Step 5. The durpd process notices that a new entry has been appended to
thereplication log file, reads the replication log entry, and sends the
changeto the dave dapd viaLDAP.

Step6: The dave dapd performs the modify operation and returns a success
code to the Slurpd process.

Note that if the LDAP client happened to connect to the master slapd to begin with,
Step 3 is omitted, but the rest of the scenario remains the same.

Replication Logs

When dapd is configured to generate a replication logfile, it writes out a file in a
format which is a variant of the LDIF format. The replication log gives the
replication site(s), atimestamp, the DN of the entry being modified, and a series of
lines which specify the changesto make. In the example below, “Barbara Jensen”
has replaced aline of her multiLineDescription. The change is to be propagated to

51

11.3

the dapd instance running on truelies.rs.itd.umich.edu. The lastModifiedBy and
lastModified Time attributes are also propagated to the dave dapd.

replica: truelies.rs.itd.um ch. edu: 389

time: 809618633

dn: cn=Barbara Jensen, ou=People, o=University of M chigan, c=US
changet ype: nodi fy

del ete: multiLineDescription

nul ti Li neDescription: | enjoy sailing in ny spare tine

add: mul tiLi neDescri ption
nul ti Li neDescription: A dreaner...

del ete: | ast Modi fi edBy

add: | ast MdifiedBy
| ast Mbdi fi edBy: cn=Barbara Jensen, ou=People, o=University of M chigan,
c=US

del ete: | astMdifiedTi nme

add: | ast Modi fi edTi nme
| ast Modi fi edTi ne: 9508250733087

The modifications to | ast Modi fi edBy and | ast Modi fi edTi ne were
initiated by the master dapd.

Command-Line Options

Surpd supports the following command-line options.

-d <level> | ?

This option sets the durpd debug level to <l evel >. When level isa ‘?’
character, the various debugging levels are printed and dapd exits,
regardiess of any other options you give it. Current debugging levels (a
subset of dapd’ s debugging levels) are

4 heavy trace debuggi ng
64 configuration file processing
65535 enabl e al | debuggi ng

Debugging levels are additive. That is, if you want heavy trace debugging and want
to watch the config file being processed, you would set level to the sum of those
two levels (in this case, 68).

-f <fil enane>

This option specifies an dternate dapd configuration file. Surpd does not
have its own configuration file. Instead, al configuration information is
read from the dapd configuration file.

-r <fil enane>

This option specifies an dternate dapd replication log file. Under normal
circumstances, slurpd reads the name of the dapd replication log file from
the dapd configuration file. However, you can override this with the -r

52

flag, to cause durpd to process a different replication log file. See
section 10.5, Advanced slurpd Operation, for a discussion of how you
might use this option.

Operate in “one-shot” mode. Under normal circumstances, when durpd
finishes processing a replication log, it remains active and periodicaly
checksto seeif new entries have been added to the replication log. In one-
shot mode, by comparison, surpd processes a replication log and exits
immediately. If the - o option is given, the replication log file must be
explicitly specified with the - r option

<di rectory>

Specify an dternate directory for durpd’'s temporary copies of replication
logs. Thedefault locationis / usr/t np.

<fil ename>

When durpd uses kerberos to authenticate to dave dapd instances, it needs
to have an appropriate srvtab file for the remote slapd. This option allows
you to specify an aternate filename containing kerberos keys for the remote
dapd. The default filenameis/ et ¢/ srvtab. You can aso specify the
srvtab fileto use in the Slapd configuration file'sr epl i ca option. See the
documentation onthe sr vt ab directive in section 5.2.2, Genera Backend
Options. A more complete discussion of using kerberos with dapd and
surpd may be found in Appendix D.

11.4 Configuring slurpd and a slave slapd instance

To bring up areplica dapd instance, you must configure the master and slave dapd
instances for replication, then shut down the master dapd so you can copy the
database. Finally, you bring up the master dapd instance, the dave dapd instance,
and the durpd instance. These steps are detailed in the following sections. You can
set up as many slave slapd instances as you wish.

11.4.1 Set up the master slapd

Follow the procedures in Section 4, Building and Installing slapd. Be sure that the
dapd instance isworking properly before proceeding. Be sure to do the following
in the master dapd configuration file.

1.

2.

Addar epl i ca directivefor each replica. The bi nddn= parameter should
match the updat edn option in the corresponding save sapd configuration
file, and should name an entry with write permission to the dave database
(e.g., anentry listed asr oot dn, or alowed access viaaccess directives
in the dave dapd configuration file).

Add arepl ogfil e directive, which tells dapd where to log changes.
Thisfilewill be read by slurpd.

53

11.4.2 Set up the slave slapd

Install the dapd software on the host which is to be the dave dapd server. The
configuration of the slave server should be identicd to that of the master, with the
following exceptions:

1. Donotincludear epl i ca directive. While it is possible to creste “chains’
of replicas, in most cases this is inappropriate.

2. Donotincludear epl ogfi | e directive.

3. Doincludean updat edn line. The DN given should match the DN given
in the bi nddn= parameter of the corresponding r epl i ca= directivein the
master dapd config file.

4. Makesurethe DN given intheupdat edn directive has permission to write
the database (e.g., itislisted as r oot dn or is allowed access by one or
moreaccess directives).

11.4.3 Shut down the master slapd

In order to ensure that the dlave starts with an exact copy of the master’s data, you
must shut down the master slapd. Do this by sending the master dapd process an
interrupt signal with ki Il - TERM <pi d>, where <pi d> is the process-id of
the master dlapd process.

If you like, you may restart the master dapd in read-only mode while you are
replicating the database. During this time, the master dapd will return an "unwilling
to perform” error to clients that attempt to modify data.

11.4.4 Copy the master slapd’s database to the slave

Copy the master’s database(s) to the slave. For an LDBM-based database, you
must copy dl index files as well as the “NEXTI D’ file. Index files will have a
different suffix depending on the underlying database package used. The current
possibilities are

dbb Berkeley DB B-tree backend
dbh Berkeley DB hash backend
gdbm GNU DBM backend

pag UNIX NBDM backend

dir UNIX NBDM backend

Y ou should copy dl files with such a suffix that are located in the index directory
specified in your slapd config file.

11.4.5 Configure the master slapd for replication

To configure dapd to generate a replication logfile, you add a “replica”
configuration option to the master dapd’s config file. For example, if we wish to
propagate changes to the slapd instance running on host truelies.rs.itd.umich.edu:

replica host=truelies.rs.itd.um ch. edu: 389
bi nddn="cn=Replicator, o=U of M c=US"
bi ndrret hod=si npl e credenti al s=secr et

In this example, changes will be sent to port 389 (the standard LDAP port) on host
truelies. The durpd process will bind to the dave dapd as “cn=Repl i cat or,

0o=U of M c¢=US" using smple authentication with password “secr et ”.
Note that the entry given by the bi nddn= directive must exist in the dave dapd’s

database (or be ther oot dn specified in the dapd config file) in order for the bind
operation to succeed.

11.4.6 Restart the master slapd and start the slave slapd

Restart the master dapd process. To check that it is generating replication logs,
perform a modification of any entry in the database, and check that data has been
written to the log file.

11.4.7 Start slurpd

Start the slurpd process. Surpd should immediately send the test modification you
made to the dave dapd. Watch the dave dapd's logfile to be sure that the
modification was sent.

slurpd -f <mastersl apdconfigfile>

11.5 Advanced slurpd Operation
11.5.1 Replication errors

When dlurpd propagates a change to adave dapd and receives an error return code,
it writes the reason for the error and the replication record to areject file. The regect
fileislocated in the same directory with the per-replica replication logfile, and has
the same name, but with the string “. r e] ” appended. For example, for a replica
running on host truelies.rs.itd.umich.edu, port 389, the reect file, if it exists, will
be named

fusr/tnp/truelies.rs.itd.um ch. edu: 389.
A samplerejection log entry follows:

ERRCR No such attribute

replica: truelies.rs.itd.um ch. edu: 389

time: 809618633

dn: cn=Barbara Jensen, ou=Peopl e, o=University of M chigan, c=US
changet ype: nodify

del ete: mul tiLineDescription

mul tiLi neDescription: | enjoy sailing in ny spare time

add: mul tiLi neDescription
mul tiLi neDescription: A drearer...

del ete: | ast Modi fi edBy

add: | ast MdifiedBy
| ast Mbdi fi edBy: cn=Barbara Jensen, ou=Peopl e, o=University of M chigan,

55

c=US
del ete: |astMdifiedTine

add: | ast Modi fi edTi ne
| ast Modi fi edTi me: 9508250733082

Note that thisis precisely the same format as the origina replication log entry, but
with an ERROR line prepended to the entry.

11.5.2 Slurpd’s one-shot mode and reject files

11.6

It is possible to use Slurpd to process a rejection log with its “one-shot mode.” In
normal operation, slurpd watches for more replication records to be appended to the
replication log file. In one-shot mode, by contrast, urpd processes a single log
file and exits. Surpd ignores ERROR lines at the beginning of replication log
entries, so it’s not necessary to edit them out before feeding it the rejection log.

To use one-shot mode, specify the name of the rejection log on the command line as
the argument to the -r flag, and specify one-shot mode with the -o flag. For
example, to process the rejection log file
lusr/tnp/replog.truelies.rs.itd.umich.edu:389 and exit, use the
command

slurpd -r /usr/tnp/truelies.rs.itd.umch.edu:389 -0

Replication from a slapd directory server to an X.500 DSA

In mixed environments where both X.500 DSAs and dapd are used, it may be
desirable to replicate changes from a dapd directory server to an X.500 DSA. This
section discusses issues involved with this method of replication, and describes the
currently-available facilities.

To propagate changes from adapd directory server to an X.500 DSA, dlurpd runs

on the master dlapd host, and sends changes to an |dapd which acts as a gateway to
the X.500 DSA:

Replication

Log
master/V \ slurpd

slapd
LDAP LDAP
Idapd
LDAP
client
DAP

X.500 DSA

56

Figure 6: Replication from slapd to an X.500 DSA

Note that the X.500 DSA must be a read-only copy. Since the replication is one-
way, updates from DAP clients connecting to the X.500 DSA simply cannot be
handled.

A problem arises where attribute names differ between the dapd directory server
and the X.500 DSA. At present, dapd and slurpd do not support selective
replication of attributes, nor do they support trandation of attribute names and
values. For example, durpd will attempt to update the “modifiersName’ and
“modifyTimeStamp” attributes on the dave it connects to. However, the X.500
DSA may expect these attributes to be named “lastModifiedBy” and
“lastModifiedTime".

A solution to this attribute naming problem is to have the Idapd read oidtables that
map "modifiersName" to the objectID (OID) for the "lastModifiedBy" attribute and
"modify TimeStamp" to the OID for the "lastModifiedTime" attribute. Since attribute
names are carried as OIDs over DAP, this should perform the appropriate
trandation of attribute names.

57

58

12. Appendix A: Writing a s/apd Backend

12.1

Sapd has a front end that handles connection management, access control, and
protocol interpretation, and a number of backends that handle database operations.
The two pieces communicate through a well-defined API. This section documents
that APl for programmers who want to write their own database backend, and
describes the steps necessary to integrate a new backend with slapd.

Here' saquick overview of the steps you should follow to create anew backend for
slapd.

1. Choose aname for your backend (we'll cal it f 00) and create a new directory
in the dapd source area (servers/slapd/) cdled back-foo. This
directory will contain the backend routines you are about to write. You should
also create a Make-t enpl at e file in this directory. See the other Make-
t enpl at e filesinthevariousback- */ directoriesfor examples.

2. Write backend routines for each function you want your backend to provide.
See the next section for details on how to do this and the APl your routines
should export. Y ou should prefix your backend routines with “foo " to ensure
uniqueness. Your backend will undoubtedly want to cal some of the utility
routines described in section A.2.

3. Edit thefile servers/dapd/backend.c to add declarations for the backend routines
you wrote in step 2, and to initidize a backend structure. Take a look at the
existing definitionsin that file for other backends.

The slapd Backend API

The dapd backend APl (SLAPI) consists of twelve calls. Nine of the cadls
correspond to the nine LDAP protocol operations bind, unbind, search, compare,
modify, modify RDN, add, delete, and abandon. The other three cals are to
initidlize the backend, shut down the backend, and handle backend-specific
configuration. Each cdl is described in detail below. The first nine routines are
passed the same first three parameters:

Backend *he [/* info about this backend */
Connection*conn/* info about this connection */
Qperation *op /* info about this operation */

The other parameters depend on the call itself.

12.1.1 Bind

The SLAPI bind routineis defined as follows.

59

f oo_bi nd(

Backend *pe,
Connecti on *conn,
Qper ati on *op,
char *dn,
i nt met hod,
struct berval *cred
)
Thefirst three parameters are as defined above. The remaining parameters are
dn The distinguished name to bind as.

met hod The authentication method to use. It should be one of the
| dap. h constants

LDAP_AUTH_S| MPLE
LDAP_AUTH_KRBV41
LDAP_AUTH_KRBV42

cred The credentids for the bind (either a password or Kerberos
credentials).

The bind routine should return a value of O if the bind is successful, nonzero
otherwise. Thisisimportant, as areturn of O will cause the front end to consider the
connection authenticated, and it will base subsequent access control decisions
assuming the DN supplied is authentic.

Things to note:

» If the length of the credentials supplied for smple authentication is zero, a
NULL bind is being requested. This should succeed.

» IfaclientsendsaNULL dn, a NULL bind is also requested. This situation is
handled by the front end, so you will never seeit.

12.1.2 Unbind

The SLAPI unbind routineis defined as follows.

f oo_unbi nd(
Backend *be,
Connecti on*conn,
Qperation *op

)

The only three parameters are the common parameters defined above. The
connection will be dropped by the front end. The unbind backend routine is
provided so the backend can do any clean-up of loca information it has pertaining
to the connection.

12.1.3 Compare

The SLAPI compare function is defined as follows.

60

f oo_conpar e(
Backend *be,
Connect i on*conn,
Qperation *op,

char *dn,
Ava *ava
)
The first three parameters are the common ones described above. The other
parameters are
dn The distinguished name of the entry on which to perform the
compare.
ava The attribute value assertion to test against the entry.

The AVA structure is defined as follows.

t ypedef struct ava {
char *ava_type;
struct berval ava_val ue;
} Ava;

Thetypeto compare is given in the ava_t ype field, and the value to compare is
givenintheava_val ue field.

12.1.4 Search

The SLAPI search routine is defined as follows.

f oo_search(
Backend *be,
Connecti on*conn,
Qperation *op,

char *base,

i nt scope,

i nt sizelimt,
i nt timelimt,
Filter *filter,
char *filterstr,
char **attrs,

i nt attrsonly

)

The first three parameters are the common ones described above. The rest of the

parameters are
base The DN of the base object at which to start the search.
scope The scope of the search. One of thel dap. h constants

LDAP_SCOPE_BASECBJECT
LDAP_SCOPE_ONELEVEL
LDAP_SCOPE_SUBTREE

61

sizelimt A client-supplied limit on the number of entries to return. A
value of zero implies no limit.

timelimt A client-supplied limit on the number of secondsto spend on
the search. A value of zero implies no limit.

filter A data structure representing the search filter. A backend
would normally use either this parameter or thefi [terstr
parameter, not both. See below for a description of this
structure.

filterstr A string representation of the search filter. A backend would
normally use either this parameter or thef i | t er parameter,
not both. The format of this string is as defined in RFC

1588.

attrs An array of char *’'s indicating the attributes to return
from the search. A NULL vaue for attrs implies dl
attributes.

attrsonly A Boolean parameter indicating whether only attribute types
should be returned (non-zero) or if attribute types and values
should be returned (zero).

TheFilter structure is used to represent an LDAP search filter. The search filter is
described in ASN.1 as the following.

Filter ::= CHO CE {
and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equal i t yMat ch [3] AttributeVal ueAsserti on,
substrings [4] SubstringFilter,
gr eat er Or Equal [5] AttributeVal ueAsserti on,
| essOr Equal [6] AttributeVal ueAsserti on,
pr esent [7] AttributeType,
appr oxhat ch [8] AttributeVal ueAssertion
}

The C language Filter structure definition used to represent this viathe fil ter
parameter is defined asfollowsin thesl ap. h header file.

62

typedef struct filter {

unsi gned | ong f _choi ce; /* fromldap.h */

uni on {
char *f _un_type [/* present */
Ava f_un_ava; /* eq, approx,|le,ge */
struct filter *f _un_conpl ex;/* and, or, not */
struct sub { /* substrings */

char *f _un_sub_type;
char *f_un_sub_initial
char **f_un_sub_any;
char *f_un_sub_fi nal

} f_un_sub;

} f_un;
#define f_type f _un.f_un_type
#define f_ava f _un.f_un_ava
#defi ne f_avtype f_un.f_un_ava. ava_type
#define f_avval ue f _un.f_un_ava. ava_val ue
#define f_and f _un.f_un_conpl ex
#define f_or f _un.f_un_conpl ex
#define f_not f_un.f_un_conpl ex
#define f_list f_un.f_un_conpl ex
#define f_sub f un.f_un_sub
#define f_sub_type f_un.f_un_sub.f_un_sub_type
#define f_sub_initial f un.f_un_sub.f _un_sub_ initia
#define f_sub_any f _un.f_un_sub.f _un_sub_any
#define f_sub_final f_un.f_un_sub.f_un_sub_fina
struct filter *f _next; /* in and/or chain */
} Filter;

The f_choice field will have one of the following values, defined in the ldap.h
header file.

LDAP_FI LTER_AND
LDAP_FI LTER OR

LDAP_FI LTER_NOT

LDAP_FI LTER_EQUALI TY
LDAP_FI LTER_SUBSTRI NGS
LDAP_FI LTER GE

LDAP_FI LTER LE

LDAP_FI LTER_PRESENT
LDAP_FI LTER_APPROX

12.1.5 Modify

The SLAPI modify function is defined as follows.

foo_nodi fy(
Backend *be,
Connecti on*conn,
Qperation *op,
char *dn,
LDAPMod * mods

)

The first three parameters are the common ones described above. The other
parameters are

63

dn The distinguished name of the entry to modify.
nods Thelist of modifications to make to the entry.

The LDAPMod structure is defined asfollowsinthel dap. h header file.

t ypedef struct |dapnod {
int nod_op;
char *nod_type;
uni on {
char **modv_strval s;
struct berval **modv_bval s;
} nod_val s;
#define nod values nod vals.nodv_strvals
#define nod_bval ues nod val s. nodv_bval s
struct |dapnmod *nod_next;
} LDAPMb;

The nod_op field identifies the type of modification and will have one of the
following values, defined in the| dap. h header file.

LDAP_MOD_ADD
LDAP_MOD_DELETE
LDAP_MOD_REPLACE

Note that themod_bval ues form of representing values is always used, but that
thenod_op field isnot ORed with LDAP_MOD_BVALUES, as LDAP clients must
dotousethenod_bval ues field.

12.1.6 Modify RDN

The SLAPI modify RDN function is defined as follows.

f oo_nodi fyrdn(
Backend *be,
Connecti on*conn,
Qperation *op,

char *dn,
char *newr dn,
i nt del et eol drdn
)
The first three parameters are the common ones described above. The other
parameters are
dn The distinguished name of the entry whose name is to be
changed.
new dn The new RDN to give the entry.

del et eol drdn

A Boolean flag indicating whether the old RDN is to be
deeted from the entry (non-zero) or kept as a non-
distinguished attribute value in the entry (zero).

64

12.1.7 Add

The SLAPI add function is defined as follows.

f oo_add(
Backend *be,
Connecti on*conn,
Qper ation *op,

Entry *e
)
The first three parameters are the common ones described above. The additiona
parameter is
e A pointer to an Entry structure specifying the entry to add.

The Entry structure is defined in the slap.h header file as follows.

typedef struct entry {

char *e dn;

Attribute *e attrs;

/* other things you should not ness with */
} Entry;

Thee_dn field containsthe DN of the entry.

Thee_attrs fieldisalinked list of the entry’ s attributes. Each element of this list
has the following definition, asgivenin sl ap. h.

t ypedef struct attr {

char *a type;

struct berval **a vals;

i nt a_synt ax;

struct attr *a_next;
} Attribute;

Thea_synt ax field identifies the syntax of the attribute and will have one of the
following values, defined in sl ap. h.

SYNTAX CI S/* case insensitive string */
SYNTAX CES/* case sensitive string */
SYNTAX BI N/ * binary data */

SYNTAX TEL/* tel ephone nunber string */
SYNTAX DN /* dn string */

The syntax values may be additive in some cases. For example, an attribute of type
t el ephoneNunber will have syntax (SYNTAX_CI' S | SYNTAX_TEL).

12.1.8 Delete

The SLAPI delete function is defined as follows.

65

f oo_del et ¢(
Backend *be,
Connecti on*conn,
Qperation *op,
char *dn

)

The first three parameters are the common ones described above. The additiona
parameter is

dn The distinguished name of the entry to delete.

12.1.9 Abandon

The SLAPI abandon function is defined as follows.

f oo_abandon(
Backend *be,
Connecti on*conn,
Qper ation *op,
i nt id

)

The first three parameters are the common ones defined above. The additional
parametersis

id the message identifier of the request to be abandoned.
In addition, the front end will set the o_abandoned flag in the operation’s

Oper at i on structure. Backends may check this flag periodicaly to see if the
operation has been abandoned.

12.1.10 Initialization

When a new backend instance is encountered in the slapd configuration file, the
corresponding SLAPI initiaization routine is called. It is defined as follows.

foo_init(
Backend *be
)

The sole parameter is
be The backend-specific data structure.

The be parameter is used to hold backend-specific information. It is as defined in
the beginning of this section in the sl ap. h header file. If your backend needs to
keep any information specific to a backend instance, it should put it in the
be_ pri vat e field of the be parameter.

12.1.11 Configuration

When a configuration option unknown to the front end is encountered in a database
definition in the dlapd configuration file, it is parsed and passed to a backend-

66

specific configuration routine for processing. The SLAPI backend-specific
configuration routine is defined as follows.

foo_confi g(
Backend *be,

i nt ['i neno,
i nt ar gc,
char **argv
)
The parameters are
be The backend-specific data structure defined above.
I i neno The current line number in the configuration file. This is
useful if an error message has to be printed.
argc The number of arguments from the configuration file line.
ar gv The list of arguments from the configuration file line.
12.1.12 Close

12.2

When dapd exits normally, it calls a close routine provided by each backend
database, allowing the backends to clean up and shut down properly. The SLAPI
closeroutine is defined as follows.

foo_cl ose(
Backend *be
)

The sole parameter is
be The backend-specific data described above.

Utility Routines Your Backend May Want to Call

There are severa utility routines provided for dealing with various data types,
sending results and errors to clients, etc., that your backend will likely want to call.
Some of the more common and useful routines are described here.

12.2.1 Sending Search Entries

The send_search_entry() routine is used to encode a search result entry and send it
back to the client. It is defined as follows.

send_search_entry(
Backend *be,
Connecti on*conn,
Qperation *op,

Entry *e,
char **attrs,
i nt attrsonly

67

Thefirst three parameters are the common ones passed to the backend routines. The
entry to send back isgivenin e. An array of attribute types to include from the entry
(subject to access control) is given in attrs. The attrsonly parameter determines
whether attributes only or attributes and values should be sent back.

12.2.2 Sending a Result

An LDAPResult is sent to the client by calling the send Idap result() routine,
defined as follows.

send_| dap_resul t(
Connecti on*conn,
Qper ation *op,

i nt err,
char *mat ched,
char *t ext

)

The first two parameters are two of the three common parameters passed to the
backend. The err parameter is the LDAP error code to pass back. It should be one
of the codes defined |dap.h. The matched parameter should only be non-NULL if
er is set to LDAP_NO_SUCH_OBJECT. In this case, matched gives the DN
prefix of the request that was resolved successfully. The final parameter, text, is an
arbitrary string sent back to the client. It is meant to contain a helpful error message.

12.2.3 Testing a Filter Against an Entry

Often, your backend may need to test an entry to see if it satisfies a given search
filter. Thetest_filter() routine is provided for this purpose.

test filter(
Backend *be,
Connecti on*conn,
Qperation *op,
Entry *e,
Filter *filter
)

The first three parameters are the common ones. The e parameter is the entry to
match againgt thefilter, given in the filter parameter. test_ filter() returns zero if the
entry matches the filter, non-zero otherwise.

12.2.4 Creating an Entry

Two routines are provided to convert between the LDIF text entry format and the
internal representation. They are

str2entry(
char *s

where s isthe string containing the LDIF entry; and

68

char *
entry2str(

Entry *e,
i nt *| en,
i nt printid

)

where | en will contain the length of the string returned, and pri nti d indicates
whether the entry ID should be printed in the LDIF format. The string returned
should be considered a pointer to static storage that is overwritten on each call.

69

13. Appendix B: Writing a SHELL backend

13.1

13.2

This section provides information for system administrators wanting to use the
SHELL backend to slapd. It explains the input format, output format, and caling
conventions a SHEL L backend program must follow to communicate with slapd.

Overview

When dapd receives an operation to a SHELL backend, the backend consults the
information given in the dapd configuration file to determine what program to
invoke to handle the operation. For example, if the SHELL database definition in
the configuration file contained aline like this

sear ch {usr/ 1 ocal /bi n/ search. sh
The indicated command would be invoked in response to a search request.

Sapd feeds atext representation of the request to the command on the command's
standard input. Sapd then reads a text representation of the results or errors
produced by the command from the command's standard output. These text results
are converted to LDAP format and returned to the client. Sapd pays attention to the
exit status of the command in some situations (i.e., to determine if a BIND request
has succeeded or not).

The next sections discuss these input, output, and exit conventions in more detail.

Input Format

The input to your SHELL backend program is a simple text-based, newline
separated sequence of <opti on>: <val ue> pairs conveying the type and
information in a request. The exact format for each request is given below. All
requests start with a key word indicating the type of request, a nsgi d: line
indicating the unique message ID of the operation, and one or more suf fi x: lines
indicating the database suffix(es) the backend is configured for.

13.2.1 Bind

Theinput format for aBIND request is as follows.

Bl ND
nmsgi d: <integer>[suffix: <dn>]+
dn: <bi nddn>

nmet hod: <i nt eger>
credl en: <integer>
cred: <credential s>

The msgid parameter is a unique identifier for the operation. The et hod
parameter will be one of the LDAP authentication methods listed in <l dap. h>.
The only credential currently supported is a clear-text password (used with a smple
bind).

70

13.2.2 Unbind

The input format for an UNBIND request is as follows.

UBBI ND

nsgi d: <integer>
[suffix: <dn>]+
dn: <bi nddn>

Thisroutine is provided so the backend can do any clean-up necessary.

13.2.3 Search

The input format for a SEARCH request is as follows.

SEARCH

negi d: <i nteger>
[suffix: <dn>]+
base: <baseobj ect dn>
scope: 0| 1| 2
deref: 0| 1| 2| 3
sizelimt: <integer>
tinelimt: <integer>
filter: <ldapfilter>
attrsonly: 0| 1
attrs: all | <attrlist>

The values of the scope parameter correspond to the various LDAP scopes listed
in<l dap. h>.

The vaues of the der ef parameter correspond to the various LDAP dereference
optionslisted in <l dap. h>.

The filter parameter is a string representation of the LDAP search filter, as
described in RFC 1588.

The<attr!li st >isaspace-separated list of attributesto retrieve.

13.2.4 Compare

The input format for a COMPARE request is as follows.

COVPARE

nsgi d: <i nteger>
[suffix: <dn>]+

dn: <entrydn>
<attrtype>: <attrval ue>

The AVA (attribute value assertion) to compare to the entry is given in the
<attrtype>: <attrval ue>line

71

13.2.5 Modify

The input format for aMODIFY request is as follows.

MODI FY

nsgi d: <integer>

[suffix: <dn>]+

dn: <entrydn>

[add: <attrtype>
[<attrtype>: <attrvalue]+]*
[del ete: <attrtype>
[<attrtype>: <attrvalue]*]*
[repl ace: <attrtype>
[<attrtype>: <attrvalue]+]*

Theadd, del et e and r epl ace constructs indicate the modifications to make.

13.2.6 Modify RDN

Theinput format for aMODIFY RDN request is asfollows.

MODRDN

nmegi d: <i nteger>
[suffix: <dn>]+

dn: <entrydn>

new dn: <rdn>
deleteoldrdn: 0| 1

Thedel et eol dr dn parameter is a Boolean parameter (where 0 meansfalseand 1
meanstrue).

13.2.7 Add

The input format for an ADD request is as follows.

ADD

negi d: <i nteger>
[suffix: <dn>]+
<entry>

The <ent r y> parameter is atext representation of the entry to add in LDIF format,
as described in Section 6.3.

13.2.8 Delete

Theinput format for aDELETE request isasfollows.

ADD

nsgi d: <integer>
[suffix: <dn>]+
dn: <entrydn>

72

13.2.9 Abandon

The input format for an abandon operation is as follows.

ABANDON
nsgi d: <integer>
[suffix: <dn>]+

For the abandon operation, the nsgi d parameter gives the message ID of the
operation to abandon.

13.3 Output Format

There are two possible results a SHELL backend command can produce: search
entries, and results. The format of each is described below.

13.3.1 Search Entry

The format of asearch entry is the LDIF format described in Section 6.3. Multiple
entries can be given by separating the entries by blank lines. The Idif program
described in Section 8.2.6 can be very helpful in producing the LDIF format
required by the SHELL backend.

13.3.2 Result

The format of aresult is as follows.

RESULT

code: <integer>

mat ched: <parti al dn>
info: <string>

All of the parameters are optional and will be given default vaues if omitted. If
search entries have been returned, the RESULT follows the last one, with a blank
line preceding the RESULT.

13.3.3 Debugging

13.4

A SHELL backend command may produce debugging statements which may be
logged but otherwise ignored by slapd. Any output line beginning with the
characters "DEBUG:" will be treated as a debugging statement by slapd.

This feature can be useful when trying to debug a problem with your SHELL
backend. If you turn on SHELL debugging in slapd (level 1024), it will log
anything it reads from a SHELL backend, alowing you to see your backend's
debugging statements easily.

Exit Status

SHELL backend commands should be mindful of their exit status. This status is
examined by the invoking dapd to determine whether the command succeeded or
not. This can be important for a number of reasons.

73

13.5

1. For modify operations, the exit status determines whether the modification
should be logged and sent out to replicas or not.

2. For bind operations, the exit status determines whether the bind was
successful, and therefore whether the DN given should be trusted on future
access control decisions.

An exit status of zero indicates the command was successful. A non-zero exit status
indicates the command was not successful.

Note that on a bind operation, a zero exit status indicates that the DN given in the
bind should be trusted on future access control decisions. This means that if, for
example, aNOAUTH bind (no password provided) succeeds, you should be sure
not to return an exit status of zero.

Example

The following example illustrates a smple use of the SHELL backend to provide
LDAP accesstothe/ et ¢/ passwd file on amachine.

13.5.1 Configuration file

Our example makes use of the following ssmple configuration file.

referral ldap://Idap.itd.umch. edu

dat abase shell

suf fix "o=uni versity of mchigan, c=us"
sear ch /usr/ 1 ocal / bi n/ sear chexanpl e. sh

This configuration defines a single SHELL backend, for entries in the
“o=Uni versity of M chigan, c¢=US" subtree. Requests involving any
other subtree will be sent to the LDAP server running on the host
| dap.itd.um ch.edu. A search operation will cause the command
/usr/ | ocal / bi n/ sear chexanpl e. sh to be executed. Any other operation
will result in an “unwilling to perform” error being returned to the client.

13.5.2 Search command shell script

The search command in our example is implemented by the following bourne shell
script. It assumes avery simplefilter of the form (ui d=I ogi n) where login is a
user’s UNIX login. It extracts the login from the filter, does a smple grep for it in
the/ et ¢/ passwd file, and parses the resulting line (if any) using awk to pull out
the gecosfield.

Note that our smple example does no error checking, handles only very smple
filters, ignoresthe scope, si zel imt, ti mel i mt and other parameters, and
is meant for illustrative purposes only. A red example should do more error
checking and handle more situations.

74

1. #!/bin/sh

2. while [1]; do

3. read TAG VALUE

4, if [$2 -ne 0]; then

5. br eak

6. fi

7. case "$TAG' in

8. base:)

9. BASE=$VALUE

10. -

11. filter:)

12. FI LTER=$VALUE

13. -

14. esac

15. done

16. LOG N="echo $FILTER | sed -e "s/.*=\(.*\))/\ 1/
17. PALINE="grep -i ""$LOA N' /etc/ passwd
18.if [$?2 = 0]; then

19. echo "DEBUG passwd line is $PW.I NE"
20. echo $PW.INE | awk -F: ' {

21. printf("dn: cn=%, %\n", $1, base);
22. printf("cn: %\n", $1);

23. printf("cn: %\n", $5);

24, printf("sn: %\n", $1);

25. printf("uid: %\n", $1);

26. }' base="$BASE"

27. echo ""

28. fi

29. echo "RESULT"
30. echo "code: 0"
31. exit O

Theline numbers are for illustrative purposes only and do not appear in the actua
file.

Note the debugging statement on line 19. The output from this statement is ignored
by dapd because of the DEBUG. prefix, unless debugging is turned on, in which
case it may be logged (depending on the debugging level) but will otherwise not
affect the search results sent.

75

14. Appendix C: Distributed Indexing with centipede

centipede is the LDAP centroid index generation and maintenance program. Y ou
can useit to extract centroid or other index information from one LDAP server and
ingtal it in another. Although index information can be extracted from any LDAP
server, only a dapd LDAP server will understand the information and thus be
capable of making use of it as indexing information (i.e., you should only attempt
to install index information in adapd LDAP server). centipede is very experimental
at the moment, so use it at your own risk.

Why would you want to do this? If you want to support searches whose scope
cannot be easily restricted using the LDAP namespace, centipede can make these
searches efficient. For example, what if you are looking for Babs Jensen, but you
don't know what company she works for, or even what state she's in. All you
know isthat sheisaUS resident. A search of the entire c=US subtree may be what
you want to do, but that's potentially very expensive since it involves contacting
every server in the US. With centipede, an indexing dapd can use the index
information centipede provides to prune the search space of servers, only referring
the client to servers likely to have information on Babs. Or, you might want to
create a specia index area in your LDAP tree that collects centipede information
from other servers based on some entirely different criteria not related to the
hierarchy of the LDAP namespace.

The general form of a centipede command is as follows.

ETCDI R/centipede [-f filter] [-F] [-R [-f filter]
[-t directory] [-m authmethod] [-b binddn]
[-p passwd] [-c cachesi ze]
-s sourceur|
-d desturl
attributes

The options have the following meanings.

-V
Turn on verbose mode. This option can be given multiple times to increase
the level of verbosity.

-n
Do not actualy ingtall index information. Useful in conjunction with - v for
seeing what centipedeis up to.

-f ldapfilter
Specify a filter used to sdlect the entries for which to generate indexing
information. | dapfi | t er should be a string LDAP filter as described by
RFC 1588.

-F

Generate full, as opposed to relative, index information.

76

14.1

Generate relative, as opposed to full, index information. Full information is
still generated if there is no previous information available from which to
generate the relative information. Thisisthe default.

-t directory
Specify the directory in which to create temporary files, find existing index
information, and put new index information. The default iswhatever is used
by tempnam(3).

-b bi nddn
Specify the DN to authenticate with when extracting index information.

-p passwd

Specify the password to use for simple authentication when extracting index
information.

- m aut hnet hod

Specify the authentication method to use when extracting index information.
aut hnmet hod should be either "si npl e" or "ker ber 0s".

-B bi nddn
Specify the DN to authenticate with when installing index information.

-P passwd

Specify the password to use for simple authentication when ingtalling index
information.

- M aut hnet hod

Specify the authentication method to use when installing index information.
aut hnet hod should be either "si npl e" or "ker ber os".

-Cc cachesi ze

Specify the size in bytes of the cache used when building the new index
information. Upping this number can cause a big performance boost, if
you've got the memory for it.

An Example

Suppose you are running an LDAP server on the host babs. com for an
organization caled "BabsCo" based in the US, and you want to participate in the
c=US indexing scheme described above by generating index information for the
cn, sn and obj ect cl ass attributesin all the people entriesin your subtree. You
want to install the index informatioin in the indexing dapd running on the host
vertigo.rs.itd.um ch. edu under the c=US entry. This way, when an
LDAP client connects to the dapd on verti go and does a subtree search of
c=US, dapd can consult the index information to tell whether it should refer the
client to your server or not. Y ou could accomplish this with acommand like this:

77

14.2

$(ETCDI R)/ centi pede -f ' (objectclass=person)’
-msinple -b <your-rootdn> -p <your-rootdnpw>
-s "l dap://babs. com 0=BabsCo, c=US"
-d "ldap://vertigo.rs.itd.um ch. edu/ c=US"
cnh sn objectcl ass

Note the- b and - p options can be used to authenticate as an entity able to read dll
the information you want.

Limitations

Thisisall very experimental at the moment, and is subject to change. The scheme is
very promising, but lots of stuff needs to be worked out, such as how clients
discover indexing servers, how indexing servers discover index sources, how best
to maintain the information, etc.

Currently, centipede only handles value-based index information. A future version
of centipede will allow other types of index information to be manipulated (e.g.,
word-based indexes, substring indexes, phonetic indexes, hash indexes, etc.). A
future version may also allow weights to be generated for the index values.

Finally, centipede works strictly over LDAP a the moment. If and when the
Common Indexing Protocol develops, centipede may change to use CIP instead.

78

15. Appendix D: Using Kerberos authentication with
slapd and slurpd.

15.1

15.2

Sapd and durpd both support authentication using MIT's Kerberos 4 system,
which is supported in the LDAP protocol as a stronger form of authentication than
smple (clear-text password) authentication. This appendix describes how to
configure dapd and durpd to support Kerberos 4 authentication, and how to link
Kerberos identities to directory entries. Note that some LDAP clients do not
support Kerberos authentication.

Build the U-M LDAP Package with Kerberos Support Enabled

By default, Kerberos support is not included when you build dapd and slurpd as
part of the U-M LDAP package. You will need to edit the Make- common file to
enable Kerberos before you make the software. See section 4 above for
instructions on building the LDAP package.

Using Kerberos with slapd

Follow these steps to configure slapd for K erberos authentication.

15.2.1 Obtain a srvtab File for Your slapd Server

Y ou will need to add your dapd server to your realm's Kerberos server and extract
an appropriate srvtab (service key) file. This is typicaly done using MIT's
kdb_edit and ext_srvtab utilities, and must be done by someone who has privileged
access to the Kerberos database (the Kerberos administrator).

Y ou will actually want to add two Kerberos entries for each dapd server: one with
aname portion of | dapser ver and one with a name portion of x500dsa. The
second oneis necessary because most LDAP clients that use Kerberos have no way
of knowing that they are connected to a server that is not back-ended by an X.500
DSA, so they will try to authenticate in two steps, first using to the LDAP server
and then to the X.500 DSA. dapd will ignore the second authentication step, but
the LDAP clientswill be unhappy if the x500dsa principa does not exist.

The instance portion of both principals needs to match the first part of the red name
of the host on which you run slapd. LDAP clients will determine the rea name of
the dapd host by performing a reverse (get host byaddr -style or “i n-
addr . ar pa”) Domain Name Service lookup on the IP address of the dapd host,
and then they will use the part to the left of thefirst dot (.) as the Kerberos instance
name for the server.

For example, if an LDAP client is told to connect to the server on the host
“d.rs.itd.umich.edu”, it will perform a forward (get host bynane-style) DNS
lookup and open a TCP LDAP connection to |P address 141.211.164.2 port 389.
When doing Kerberos authentication, it will look up the hosthame using the IP
address and see that the red host nameisterm nator.rs.itd. um ch. edu.
Thus the Kerberos tickets (shown in nane.i nst ance@r eal mformat) that the
client will obtain and passto dapd will be:

79

| dapserver.term nator @ni ch. edu
and
x500dsa. t er mi nat or @uni ch. edu

(assuming that “um ch. edu” is your Kerberos realm). Both of these principals
need to be added to the“um ch. edu” Kerberos database, and a srvtab file would
need to be extracted that contains their service keys.

15.2.2 Install the srvtab File and Tell slapd Where It Is

Place the srvtab file on the machine where you are going to run dapd and add a
“srvt ab” line to the dapd configuration file. The srvt ab config. file option
simply contains the full path to the “l dapser ver/ x500dsa” service key file
obtained in the previous step (the default is/ et ¢/ srvt ab if nosr vt ab optionis
specified). For example, assuming the srvtab is in a file cdled
/ et c/ sl apd. srvt ab, thiswould be an appropriate dapd config. fileline:

srvtab /etc/slapd. srvtab

If dapd is already running, you will need to kill and restart it to have dapd
recognize the new option.

15.2.3 Add Kerberos Names to Entries to Enable Authentication

To authenticate as an entry in the directory using Kerbeors, the entry must contain
one or more kr bNane (Kerberos Name) attributes that associate a Kerberos
identity with the entry. Each krbName value should be a string of the form:

principal.instance@ eal m

(theinstance part is optional). For example, to alow the principal “bj ensen” in
the“um ch. edu” Kerberos realm to authenticate to dapd as the entry “cn=Babs
Jensen, o=University of Mchigan, c¢=US", you could use the
| dapnodi fy(2) tool (or another LDAP client) to add a krbName attribute to her
entry that has the string value “bj ensen@mni ch. edu”. To do this, first you
would first create afilecalled / t np/ nodi f y with the contents:

cn=Babs Jensen, o=University of M chigan, c=US
kr bNane=bj ensen@mi ch. edu

and then use acommand like thisto actually make the change:

| daprmodi fy -f /tnp/nodify -D "cn=Manager, o=University of
M chi gan, c=US" -w secret

Note that the above command assumes that you have set rootdn to
“cn=Manager, o=University of M chigan, c¢=US" and root pw to
“secr et ” inyour slapd configuration file.

Y ou should now be able to authenticate to dapd as Bab's entry using Kerberos.
For example, the following commands will authenticate using Kerberos and
perform a search for dl entries that have a surname of “Sm t h” while bound as

80

Babs' entry and retrieve the conmronName of each entry (text you would type is
whown in bold):

kKinit bjensen

University of Mchigan (terminator.rs.itd.um ch. edu)
Kerberos Initialization for "bjensen"

Passwor d: secr et

| dapsearch -k -D " cn=Babs Jensen, o=University of
M chi gan, c¢=US" sn=smith cn

15.2.4 Associate a Kerberos Name with the “rootdn” (optional)

15.3

If you want to use Kerberos to authenticate as the dapd r oot dn (the specia DN
that is not subject to access control or administrative limits), you should add a
r oot kr bnane directive to the dapd config. file. For example, if bj ensen
should have the ability to authenticate as the r oot dn when she authenticates to
Kerberos using an instance of "adni n", you would include a line like this in the
dapd config. file:

r oot kr bnane bj ensen. adm n@mi ch. edu

Using Kerberos With slurpd

Surpd (the replication daemon) is capable of using Kerberos authentication when
authenticating to the dave dapds that it is configured to serve. To enable this
feature, follow these steps:

15.3.1 Obtain a srvtab File for Your slurpd Server

Create a Kerberos principal entry in your realm's Kerberos database for slurpd.
The name and instance can be anything you like (unlike the “| dapser ver” and
“x500dsa” principalsyou must use for slapd). You will need to obtain and install
asrvtab filethat containsthis slurpd Kerberos key (ingtal it on the machine where
durpd will run). As mentioned above, you will need to contact your Kerberos
administrator to get thisfile. For the examplesthat follow, we will assume that you
have added a Kerberos database entry and obtained a srvtab file for the principal:
slurpd.term nator @m ch.edu and ingtaled it in a file cdled
[etc/slurpd. srvtab

15.3.2 Configure the slapd Slaves to Accept Kerberos Authentication

Each dapd dave must be compiled and configured to support Kerberos
authentication (as discussed previously). In addition, the updat edn used by
durpd to authenticate when sending updates to the daves must have a Kerberos
Name associated with it that matchesthe dlurpd srvtab file obtained in the previous
step. This can be done as for any other entry smply by adding the appropriate
kr bNane attribute vaue to the updat edn entry in slapd. If you happen to be
using the r oot dn as the updat edn, then you can just include an appropriate
r oot kr bname directive in the slapd config. file, e.g.,

81

r oot kr bnane sl urpd. term nat or @ni ch. edu

15.3.3 Configure slurpd to Use Kerberos When Connecting to the Slaves

You need to use a bi ndnet hod of ker beros and specify the path to an

appropriate srvtab file within the r epl i ca configuration file options. You will
also need to specify the path to the srvtab file. E.g.,

replica host =sl avel. uni ch. edu
"bi nddn=cn=Manager, o=University of M chigan, c=US"
bi ndnet hod=ker ber os
srvtab=/etc/ sl urpd. srvtab

Don't forget to restart both Slurpd and the slapd daves after making changes to the
config. file(s).

82

