
1

The SLAPD and SLURPD Administrator’s Guide

University of Michigan

30 April 1996
Release 3.3

2

Copyright

Copyright © 1992-1996 Regents of the University of Michigan. All Rights
Reserved.

Redistribution and use in source and binary forms are permitted provided that this
notice is preserved and that due credit is given to the University of Michigan at Ann
Arbor. The name of the University may not be used to endorse or promote products
derived from this software or documentation without specific prior written
permission. This software is provided "as is" without any express or implied
warranty.

Acknowledgments

The LDAP development team at the University of Michigan consists of Tim
Howes, Mark Smith, Gordon Good, Lance Sloan and Steve Rothwell. Our thanks
also to Bryan Beecher, Frank Richter, Eric Rosenquist, Peter Whittaker, Martijn
Koster, Craig Watkins, Rocky Rakesh Patel, Alan Young, Mark Prior, Enrique
Silvestre Mora, Roland Hedberg, and numerous others.

3

Table of Contents
1. INTRODUCTION TO SLAPD AND SLURPD . 6

1.1 WHAT IS A DIRECTORY SERVICE?...6
1.2 WHAT IS LDAP?..6
1.3 HOW DOES LDAP WORK?...8
1.4 WHAT IS SLAPD AND WHAT CAN IT DO?...8
1.5 WHAT ABOUT X.500?...9
1.6 WHAT IS SLURPD AND WHAT CAN IT DO?...9

2. A QUICK-START GUIDE TO RUNNING SLAPD .1 0

3. THE BIG PICTURE - CONFIGURATION CHOICES. .1 2

3.1 LDAP AS A LOCAL SERVICE ONLY ... 12
3.2 LOCAL SERVICE WITH X.500 REFERRALS.. 12
3.3 LDAP AS A FRONT END TO X.500... 13
3.4 REPLICATED SLAPD SERVICE .. 13

4. BUILDING AND INSTALLING SLAPD & SLURPD .1 4

4.1 PRE-BUILD CONFIGURATION... 14
4.1.1 Editing the Make-common file... 14
4.1.2 Editing the include/ldapconfig.h file .. 16

4.2 MAKING THE SOFTWARE.. 17
4.3 INSTALLING THE SOFTWARE ... 17

5. THE SLAPD CONFIGURATION FILE. .1 9

5.1 CONFIGURATION FILE FORMAT... 19
5.2 CONFIGURATION FILE OPTIONS... 19

5.2.1 Global Options... 20
5.2.2 General Backend Options .. 22
5.2.3 LDBM Backend-Specific Options ... 24
5.2.4 Shell Backend-Specific Options.. 25
5.2.5 Password Backend-Specific Options .. 26

5.3 ACCESS CONTROL... 26
5.3.1 What to control access to .. 26
5.3.2 Who to grant access to ... 27
5.3.3 The access to grant .. 28
5.3.4 Access Control Evaluation.. 28
5.3.5 Access Control Examples ... 28

5.4 SCHEMA ENFORCEMENT.. 29
5.5 CONFIGURATION FILE EXAMPLE ... 30

6. RUNNING S L A P D .3 3

6.1 COMMAND-LINE OPTIONS.. 33
6.2 RUNNING SLAPD AS A STAND-ALONE DAEMON.. 34
6.3 RUNNING SLAPD FROM INETD ... 34

7. MONITORING SLAPD. .3 5

8. DATABASE CREATION AND MAINTENANCE TOOLS. .3 7

8.1 CREATING A DATABASE OVER LDAP.. 37
8.2 CREATING A DATABASE OFF-LINE.. 38

8.2.1 The ldif2ldbm program... 39
8.2.2 The ldif2index program... 40
8.2.3 The ldif2id2entry program... 41
8.2.4 The ldif2id2children program ... 41

4

8.2.5 The ldbmcat program ... 41
8.2.6 The ldif program ... 41

8.3 THE LDIF TEXT ENTRY FORMAT.. 42
8.4 CONVERTING FROM QUIPU EDB FORMAT TO LDIF FORMAT .. 43

8.4.1 The edb2ldif program ... 43
8.4.2 Step-by-step EDB to LDIF conversion .. 44

8.5 THE LDBMTEST PROGRAM.. 45
8.6 THE LDBM DATABASE FORMAT.. 46

8.6.1 Overview... 46
8.6.2 Attribute index format.. 47
8.6.3 Other indexes.. 47

9. PERFORMANCE TUNING. .4 8

9.1 THE ALLIDS THRESHOLD .. 48
9.2 THE ENTRY CACHE .. 48
9.3 THE DB CACHE... 48
9.4 MAINTAIN THE RIGHT INDICES .. 49

10. DISTRIBUTING SLAPD DATA. .5 0

11. REPLICATION WITH SLURPD .5 1

11.1 OVERVIEW ... 51
11.2 REPLICATION LOGS ... 51
11.3 COMMAND-LINE OPTIONS .. 52
11.4 CONFIGURING SLURPD AND A SLAVE SLAPD INSTANCE.. 53

11.4.1 Set up the master slapd... 53
11.4.2 Set up the slave slapd... 54
11.4.3 Shut down the master slapd ... 54
11.4.4 Copy the master slapd’s database to the slave.. 54
11.4.5 Configure the master slapd for replication... 54
11.4.6 Restart the master slapd and start the slave slapd .. 55
11.4.7 Start slurpd... 55

11.5 ADVANCED SLURPD OPERATION.. 55
11.5.1 Replication errors .. 55
11.5.2 Slurpd’s one-shot mode and reject files... 56

11.6 REPLICATION FROM A SLAPD DIRECTORY SERVER TO AN X.500 DSA...................................... 56

12. APPENDIX A: WRITING A SLAPD BACKEND .5 8

12.1 THE SLAPD BACKEND API... 59
12.1.1 Bind.. 59
12.1.2 Unbind .. 60
12.1.3 Compare.. 60
12.1.4 Search ... 61
12.1.5 Modify .. 63
12.1.6 Modify RDN .. 64
12.1.7 Add... 65
12.1.8 Delete.. 65
12.1.9 Abandon .. 66
12.1.10 Initialization ... 66
12.1.11 Configuration.. 66
12.1.12 Close... 67

12.2 UTILITY ROUTINES YOUR BACKEND MAY WANT TO CALL ... 67
12.2.1 Sending Search Entries ... 67
12.2.2 Sending a Result ... 68
12.2.3 Testing a Filter Against an Entry.. 68
12.2.4 Creating an Entry .. 68

13. APPENDIX B: WRITING A SHELL BACKEND. .7 0

5

13.1 OVERVIEW ... 70
13.2 INPUT FORMAT ... 70

13.2.1 Bind.. 70
13.2.2 Unbind .. 71
13.2.3 Search ... 71
13.2.4 Compare.. 71
13.2.5 Modify .. 72
13.2.6 Modify RDN .. 72
13.2.7 Add... 72
13.2.8 Delete.. 72
13.2.9 Abandon .. 73

13.3 OUTPUT FORMAT .. 73
13.3.1 Search Entry ... 73
13.3.2 Result ... 73
13.3.3 Debugging ... 73

13.4 EXIT STATUS .. 73
13.5 EXAMPLE... 74

13.5.1 Configuration file .. 74
13.5.2 Search command shell script .. 74

14. APPENDIX C: DISTRIBUTED INDEXING WITH CENTIPEDE .7 6

14.1 AN EXAMPLE.. 77
14.2 LIMITATIONS.. 78

15. APPENDIX D: USING KERBEROS AUTHENTICATION WITH SLAPD AND
SLURPD .7 9

15.1 BUILD THE U-M LDAP PACKAGE WITH KERBEROS SUPPORT ENABLED................................... 79
15.2 USING KERBEROS WITH SLAPD.. 79

15.2.1 Obtain a srvtab File for Your slapd Server .. 79
15.2.2 Install the srvtab File and Tell slapd Where It Is .. 80
15.2.3 Add Kerberos Names to Entries to Enable Authentication.. 80
15.2.4 Associate a Kerberos Name with the “rootdn” (optional).. 81

15.3 USING KERBEROS WITH SLURPD.. 81
15.3.1 Obtain a srvtab File for Your slurpd Server... 81
15.3.2 Configure the slapd Slaves to Accept Kerberos Authentication .. 81
15.3.3 Configure slurpd to Use Kerberos When Connecting to the Slaves 82

6

1. Introduction to slapd and slurpd

This document describes how to build, configure, and run the stand-alone LDAP
daemon (slapd) and the stand-alone LDAP update replication daemon (slurpd). It is
intended for newcomers and experienced administrators alike. This section provides
a basic introduction to directory service, and the directory service provided by slapd
in particular.

1.1 What is a directory service?

A directory is like a database, but tends to contain more descriptive, attribute-based
information. The information in a directory is generally read much more often than
it is written. As a consequence, directories don't usually implement the complicated
transaction or roll-back schemes regular databases use for doing high-volume
complex updates. Directory updates are typically simple all-or-nothing changes, if
they are allowed at all. Directories are tuned to give quick-response to high-volume
lookup or search operations. They may have the ability to replicate information
widely in order to increase availability and reliability, while reducing response time.
When directory information is replicated, temporary inconsistencies between the
replicas may be OK, as long as they get in sync eventually.

There are many different ways to provide a directory service. Different methods
allow different kinds of information to be stored in the directory, place different
requirements on how that information can be referenced, queried and updated, how
it is protected from unauthorized access, etc. Some directory services are local,
providing service to a restricted context (e.g., the finger service on a single
machine). Other services are global, providing service to a much broader context
(e.g., the entire Internet). Global services are usually distributed, meaning that the
data they contain is spread across many machines, all of which cooperate to provide
the directory service. Typically a global service defines a uniform namespace which
gives the same view of the data no matter where you are in relation to the data itself.

1.2 What is LDAP?

Slapd's model for directory service is based on a global directory model called
LDAP, which stands for the Lightweight Directory Access Protocol. LDAP is a
directory service protocol that runs over TCP/IP. The nitty-gritty details of LDAP
are defined in RFC 1777 "The Lightweight Directory Access Protocol." This
section gives an overview of LDAP from a user's perspective.

What kind of information can be stored in the directory? The LDAP directory
service model is based on entries. An entry is a collection of attributes that has a
name, called a distinguished name (DN). The DN is used to refer to the entry
unambiguously. Each of the entry's attributes has a type and one or more values.
The types are typically mnemonic strings, like "cn" for common name, or "mail"
for email address. The values depend on what type of attribute it is. For example, a
mail attribute might contain the value "babs@umich.edu". A jpegPhoto
attribute would contain a photograph in binary JPEG/JFIF format.

How is the information arranged? In LDAP, directory entries are arranged in a
hierarchical tree-like structure that reflects political, geographic and/or

7

organizational boundaries. Entries representing countries appear at the top of the
tree. Below them are entries representing states or national organizations. Below
them might be entries representing people, organizational units, printers,
documents, or just about anything else you can think of. Figure 1 shows an
example LDAP directory tree, which should help make things clear.

c=US

o=Acme, Inc.
mail: info@acme.com
fax: 313 123-4567

cn=Barbara J Jensen
cn: Babs Jensen
cn: Barbara Jensen
mail: babs@umich.edu
...

c=GB

o=U of M

Figure 1: An example LDAP directory tree.

In addition, LDAP allows you to control which attributes are required and allowed
in an entry through the use of a special attribute called objectclass. The values
of the objectclass attribute determine the schema rules the entry must obey.

How is the information referenced? An entry is referenced by its distinguished
name, which is constructed by taking the name of the entry itself (called the relative
distinguished name, or RDN) and concatenating the names of its ancestor entries.
For example, the entry for Barbara Jensen in the example above has an RDN of
"cn=Barbara J Jensen" and a DN of "cn=Barbara J Jensen, o=U
of M, c=US". The full DN format is described in RFC 1779, "A String
Representation of Distinguished Names."

How is the information accessed? LDAP defines operations for interrogating and
updating the directory. Operations are provided for adding and deleting an entry
from the directory, changing an existing entry, and changing the name of an entry.
Most of the time, though, LDAP is used to search for information in the directory.
The LDAP search operation allows some portion of the directory to be searched for
entries that match some criteria specified by a search filter. Information can be
requested from each entry that matches the criteria.

For example, you might want to search the entire directory subtree below the
University of Michigan for people with the name Barbara Jensen, retrieving the
email address of each entry found. LDAP lets you do this easily. Or you might
want to search the entries directly below the c=US entry for organizations with the
string "Acme" in their name, and that have a fax number. LDAP lets you do this
too. The next section describes in more detail what you can do with LDAP and how
it might be useful to you.

How is the information protected from unauthorized access? Some directory
services provide no protection, allowing anyone to see the information. LDAP
provides a method for a client to authenticate, or prove its identity to a directory

8

server, paving the way for rich access control to protect the information the server
contains.

1.3 How does LDAP work?

LDAP directory service is based on a client-server model. One or more LDAP
servers contain the data making up the LDAP directory tree. An LDAP client
connects to an LDAP server and asks it a question. The server responds with the
answer, or with a pointer to where the client can get more information (typically,
another LDAP server). No matter which LDAP server a client connects to, it sees
the same view of the directory; a name presented to one LDAP server references the
same entry it would at another LDAP server. This is an important feature of a global
directory service, like LDAP.

1.4 What is slapd and what can it do?

Slapd is an LDAP directory server that runs on many different UNIX platforms.
You can use it to provide a directory service of your very own. Your directory can
contain pretty much anything you want to put in it. You can connect it to the global
LDAP directory service, or run a service all by yourself. Some of slapd's more
interesting features and capabilities include:

Choice of databases: Slapd comes with three different backend databases you
can choose from. They are LDBM, a high-performance disk-based database;
SHELL, a database interface to arbitrary UNIX commands or shell scripts; and
PASSWD, a simple password file database.

Multiple database instances: Slapd can be configured to serve multiple
databases at the same time. This means that a single slapd server can respond to
requests for many logically different portions of the LDAP tree, using the same or
different backend databases.

Generic database API: If you require even more customization, slapd lets you
write your own backend database easily. Slapd consists of two distinct parts: a
front end that handles protocol communication with LDAP clients; and a backend
that handles database operations. Because these two pieces communicate via a well-
defined C API, you can write your own customized database backend to slapd.

Access control: Slapd provides a rich and powerful access control facility,
allowing you to control access to the information in your database(s). You can
control access to entries based on LDAP authentication information, IP address,
domain name and other criteria.

Threads: Slapd is threaded for high performance. A single multi-threaded slapd
process handles all incoming requests, reducing the amount of system overhead
required. Slapd will automatically select the best thread support for your platform.

Replication: Slapd can be configured to maintain replica copies of its database.
This master/slave replication scheme is vital in high-volume environments where a
single slapd just doesn't provide the necessary availability or reliability.

9

Configuration: Slapd is highly configurable through a single configuration file
which allows you to change just about everything you'd ever want to change.
Configuration options have reasonable defaults, making your job much easier.

Slapd also has its limitations, of course. It does not currently handle aliases, which
are part of the LDAP model. The main LDBM database backend does not handle
range queries or negation queries very well. These features and more will be
coming in a future release.

1.5 What about X.500?

LDAP was originally developed as a front end to X.500, the OSI directory service.
X.500 defines the Directory Access Protocol (DAP) for clients to use when
contacting directory servers. DAP is a heavyweight protocol that runs over a full
OSI stack and requires a significant amount of computing resources to run. LDAP
runs directly over TCP and provides most of the functionality of DAP at a much
lower cost.

This use of LDAP makes it easy to access the X.500 directory, but still requires a
full X.500 service to make data available to the many LDAP clients being
developed. As with full X.500 DAP clients, a full X.500 server is no small piece of
software to run.

The stand-alone LDAP daemon, or slapd, is meant to remove much of the burden
from the server side just as LDAP itself removed much of the burden from clients.
If you are already running an X.500 service and you want to continue to do so, you
can probably stop reading this guide, which is all about running LDAP via slapd,
without running X.500. If you are not running X.500, want to stop running
X.500, or have no immediate plans to run X.500, read on.

It is possible to replicate data from a slapd directory server to an X.500 DSA,
which allows your organization to make your data available as part of the global
X.500 directory service on a "read-only" basis. This is discussed in section 11.6.

Another way to make data in a slapd server available to the X.500 community
would be by using a X.500 DAP to LDAP gateway. At this time, no such software
has been written (to the best of our knowledge), but hopefully some group will see
fit towrite such a gateway.

1.6 What is slurpd and what can it do?

Slurpd is a UNIX daemon that helps slapd provide replicated service. It is
responsible for distributing changes made to the master slapd database out to the
various slapd replicas. It frees slapd from having to worry that some replicas might
be down or unreachable when a change comes through; slurpd handles retrying
failed requests automatically. Slapd and slurpd communicate through a simple text
file that is used to log changes.

10

2. A Quick-Start Guide to Running slapd

This section provides a quick step-by-step guide to building, installing and running
slapd. It is intended to provide users with a simple and quick way to get started
only. If you intend to run slapd seriously, you should read the rest of this guide.

1. Get the software. Slapd is part of the LDAP distribution, which you can
retrieve using this URL:

ftp://terminator.rs.itd.umich.edu/ldap/ldap.tar.Z

If you are reading this guide, you have probably already done this.

2. Untar the distribution. Pick a place for the LDAP source to live, cd
there, and untar it. For example:

cd /usr/local/src
zcat ldap.tar.Z | tar xvf -

3. Configure the software. You will have to edit two files to configure
things for your site.

vi Make-common
vi include/ldapconfig.h.edit

Read the comments in Make-common and configure things appropriately.
If you have the Berkeley DB package installed, or the GDBM package, you
should set the LDBMBACKEND variable accordingly. Otherwise, the defaults
should be OK to get you started.

In the include/ldapconfig.h.edit file, be sure to set the
DEFAULT_BASE and LDAPHOST variables to something appropriate for
your site. Other than that, the defaults should work OK.

4. Make the software. From the top level LDAP source directory, type:

make

Examine the output of this command carefully to ensure everything is made
properly. If this command fails, seek help.

5. Install the software. From the top level LDAP source directory, type:

su
make install

Examine the output of this command carefully to ensure everything is
installed properly.

6. Make a configuration file. Create a file called myslapd.conf and
enter the following lines into it. See Section 5 for more details on this file.

referral ldap://ldap.itd.umich.edu
database ldbm
suffix "o=<YOUR ORGANIZATION>, c=US"
rootdn "cn=<YOUR NAME>, o=<YOUR ORGANIZATION>, c=US
rootpw secret

Be sure to replace “<YOUR ORGANIZATION>“ with the name of your
organization and "<YOUR NAME>" with your name. If you are not in the
US, replace “US” with your two-letter country code. The rootdn and

11

rootpw lines are only required if later you want to easily add or modify
entries via LDAP.

7. Create a database. This is a two-step process. Step A is to create a file
(we’ll call it myldif) containing the entries you want your database to
contain. Use the following example as a guide, or see Section 7.3 for more
details.

dn: o=<YOUR ORGANIZATION>, c=US
o: <YOUR ORGANIZATION>
objectclass: organization

dn: cn=<YOUR NAME>, o=<YOUR ORGANIZATION>, c=US
cn: <YOUR NAME>
sn: <YOUR LAST NAME>
mail: <YOUR EMAIL ADDRESS>
objectclass: person

You can include additional entries and attributes in this file if you want, or
add them later via LDAP.

Step B is to run this file through a tool to create the slapd database.

$(ETCDIR)/ldif2ldbm -f myslapd.conf -i myldif

Where myslapd.conf is the configuration file you made in step 6, and
myldif is the file you made in step 7A above. By default, the database
files will be created in /usr/tmp. You may specify an alternate directory
via the directory option in the slapd.conf file.

8. Start slapd. Because slapd listens on a privileged TCP port number, you
will need to be root to do this.

su
$(ETCDIR)/slapd -f myslapd.conf

9. See if it works. You can use any LDAP client to do this, but our example
uses the ldapsearch tool.

ldapsearch -h 127.0.0.1 'objectclass=*'

This command will search for and retrieve every entry in the database. Note
the use of single quotes around the filter, which prevents the “*” from being
interpreted by the shell.

You are now ready to add more entries (e.g., using ldapadd(3) or another LDAP
client), experiment with various configuration options, backend arrangements, etc.
Note that by default, the slapd database grants READ access to everybody. So if
you want to add or modify entries over LDAP, you will have to bind as the
rootdn specified in the config file (see Section 5.2.2), or change the default
access control (see Section 5.3).

The following sections provide more detailed information on making, installing,
and running slapd.

12

3. The Big Picture - Configuration Choices

This section gives a brief overview of various LDAP directory configurations, and
how your LDAP server (either slapd or ldapd) fits in with the rest of the world.

3.1 LDAP as a local service only

In this configuration, you run a slapd which provides directory service for your
local domain only. It does not interact with other directory servers in any way. This
configuration is shown in Figure 2.

LDAP
cl ient

slapd

LDAP

Figure 2: Local service via slapd configuration.

Use this configuration if you are just starting out (it's the one the quick-start guide
makes for you) or if you want to provide a local service and are not interested in
connecting to the rest of the world. It’s easy to upgrade to another configuration
later if you want.

3.2 Local service with X.500 referrals

In this configuration, you run a slapd which provides directory service for your
local domain and an ldapd which provides access to the X.500 world (you don’t
have to run the ldapd yourself – you can just point to somebody else who does and
doesn't mind you pointing to their service). This configuration is shown in
Figure 3.

LDAP
cl ient

slapd

ldapd

LDAP

LDAP

X.500
ser v er

DAP

r ef er r al

Figure 3: Local service via slapd + X.500 referrals configuration

Use this configuration if you want to provide local service but still want to be
connected to the rest of the X.500 world. Remember, you don’t necessarily have to
be running the ldapd in this picture; you just need to find one you can point to.

13

3.3 LDAP as a front end to X.500

In this configuration, you run an X.500 service which provides directory service
for your local domain and gatewaying service to the rest of the X.500 world. LDAP
clients gain access to the directory through an ldapd which runs at your site. This
configuration is shown in Figure 4.

ldapd X.500
server

LDAP
client

LDAP DAP

Figure 4: Local service via X.500 and ldapd configuration

Use this configuration if you are already running an X.500 service. Slapd is not
involved in this configuration, so you can probably stop reading this guide.

3.4 Replicated slapd service

The slurpd daemon is used to propagate changes from a master slapd to one or
more slave slapds. An example master-slave configuration is shown in figure 5.

LDAP
cli ent

mast er
slapd slave

slapd

slave
slapd

LDAP

LDAP

LDAP

slur pd

Replicat ion
Log

Figure 5: Master slapd with two slaves replicated with slurpd

This configuration can be used in conjunction with the first two configurations in
situations where a single slapd does not provide the required reliability or
availability.

14

4. Building and Installing slapd & slurpd

Building and installing slapd requires three simple steps: configuring; making; and
installing. The following sections describe each step in detail. If you are reading
this guide, chances are you have already obtained the software, but just in case,
here’s where you can get the latest version of the U-M LDAP package, which
includes all of the software discussed in this guide:

ftp://terminator.rs.itd.umich.edu/ldap/ldap.tar.Z

There is also an LDAP homepage accessible from the World Wide Web. This page
contains the latest LDAP news, release announcements, and pointers to other
resources. You can access it at:

http://www.umich.edu/~rsug/ldap/

4.1 Pre-Build Configuration

Before building slapd, be sure to take a look at the README file in the top level
directory in the distribution so that you are familiar with the general configuration
and make process.

Briefly, you should edit the include/ldapconfig.h.edit and Make-
common files to contain the site-specific configuration your site requires before
making. The next sections discuss these steps in more detail.

4. 1. 1 Editing the Make-common file

All of the general Make-common configuration variables (e.g., ETCDIR,
BINDIR, etc.) apply to both slapd and slurpd. There are additional Make-common
configuration variables that also affect how slapd and slurpd are built. They are:

MAKE_SLAPD

This option controls whether slapd and slurpd get built at all. You should
set it to yes, like this:

MAKE_SLAPD = yes

SLAPD_BACKENDS

This option controls which slapd backend databases get built. You should
set it to one or more of the following:

-DLDAP_LDBM This is the main backend. It is a high-performance
disk-based database suitable for handling up to a
million entries or so. See the LDBMBACKEND and
LDBMLIB options below.

-DLDAP_PASSWD This is a simple search-only backend that can be
pointed at an /etc/passwd file. It is intended
more as an example than as a real backend.

15

-DLDAP_SHELL This backend allows the execution of arbitrary
system administrator-defined commands in response
to LDAP queries. The commands to execute are
defined in the configuration file. See Appendix B for
more information on writing shell backend
programs.

Example to enable the LDBM and SHELL backends only:

SLAPD_BACKENDS= -DLDAP_LDBM -DLDAP_SHELL

The default is to build all three backends. Note that building a backend only
means that it can be enabled through the configuration file, not that it will
automatically be enabled.

LDBMBACKEND

This option should only be defined if you have enabled the LDBM backend
as described above. The LDBM backend relies on a low-level hash or B-tree
package for its underlying database. This option selects which package it
will use. The currently supported options in order of preference are:

-DLDBM_USE_DBBTREE
This option enables the Berkeley DB package btree
database as the LDBM backend. You can get this
package from
ftp://ftp.cs.berkeley.edu/ucb/4bsd/db.tar.Z

-DLDBM_USE_DBHASH
This option enables the Berkeley DB package hash
database as the LDBM backend. You can get this
package from
ftp://ftp.cs.berkeley.edu/ucb/4bsd/db.tar.Z

-DLDBM_USE_GDBM
This option enables GNU dbm as the LDBM
backend. You can get this package from
ftp://prep.ai.mit.edu/pub/gnu/gdbm-1.7.3.tar.gz

-DLDBM_USE_NDBM
This option enables the standard UNIX ndbm(3)
package as the LDBM backend. This package should
come standard on your UNIX system. man ndbm
for details.

Example to enable the Berkeley DB Btree backend:

LDBMBACKEND= -DLDBM_USE_DBBTREE

The default is -DLDBM_USE_NDBM, since it is the only one available on all
UNIX systems. NDBM has some serious limitations, though (not thread-
safe, severe size limits), and you are strongly encouraged to use one of the
other packages if you can.

NOTES TO SOLARIS USERS: If you are running under Solaris 2.x
and linking in an external database package (e.g., db or gdbm) it is very
important that you compile the package with the -D_REENTRANT flag. If
you do not, bad things will happen.

16

If you are using version 1.85 or earlier of the Berkeley db package, you will
need to apply the patch found in build/db.1.85.patch to the db
source before compiling it. You can do this with a command like this from
the db source area:

patch -p < ldap-source-directory/build/db.1.85.patch

LDBMLIB

This option should only be defined if you have enabled the LDBM backend
as described above, and the necessary library for the LDBMBACKEND option
you chose above is not part of the standard C library (i.e., anything other
than NDBM). This option specifies the library to link containing the
package you selected, and optionally, its location.

Example to link with libdb.a, contained in /usr/local/lib:

LDBMLIB= -L/usr/local/lib -ldb

THREADS

This option is normally set automatically in the Make-platform file,
based on the platform on which you are building. You do not normally need
to set it. If you want to use a non-default threads package, you can specify
the appropriate -Ddefine to enable it here.

THREADSLIB

This option is normally set automatically in the Make-platform file, based on
the platform on which you are building. You do not normally need to set it.
If you have set THREADS to a non-default threads package as described
above, you can specify the appropriate -Ldirectory flag and
-llibname flag needed to link the package here.

PHONETIC

This option controls the phonetic algorithm used by slapd when doing
approximate searches. The default is to use the metaphone algorithm. You
can have slapd use the soundex algorithm by setting this variable to
-DSOUNDEX.

4. 1. 2 Editing the include/ldapconfig.h file

In addition to setting the LDAPHOST and DEFAULT_BASE defines near the top of
this file, there are some slapd-specific defines near the bottom of the file you may
want to change. The defaults should be just fine, unless you have special needs.

SLAPD_DEFAULT_CONFIGFILE

This define sets the location of the default slapd configuration file.
Normally, it is set to $(ETCDIR)/slapd.conf, where ETCDIR comes
from Make-common.

17

SLAPD_DEFAULT_SIZELIMIT

This define sets the default size limit on the number of entries returned from
a search. This option is configurable via the tailor file, but if you want to
change the default, do it here.

SLAPD_DEFAULT_TIMELIMIT

This define sets the default time limit for a search. This option is
configurable via the tailor file, but if you want to change the default, do it
here.

SLAPD_PIDFILE

This define sets the location of the file to which slapd will write its process
ID when it starts up.

SLAPD_ARGSFILE

This define sets the location of the file to which slapd will write its argument
vector when it starts up.

SLAPD_MONITOR_DN

This define sets the distinguished name used to retrieve monitoring
information from slapd. See section 7 for more details.

SLAPD_LDBM_MIN_MAXIDS

This define is only relevant to the LDBM backend. It sets the minimum
number of entry IDs that an index entry will contain before it becomes an
allIDs entry. See Section 9.1 for more details.

4.2 Making the Software

Once you have edited the include/ldapconfig.h.edit file and the Make-
common file (see the top level README file in the distribution), you are ready to
make the software. From the top level LDAP source directory, type

make

You should examine the output of this command carefully to make sure everything
is built correctly. Note that this command builds the LDAP libraries and associated
clients as well as slapd and slurpd.

Note that the LDAP distribution can support making for multiple platforms from a
single source tree. If you want to do this, consult the INSTALL file in the top level
distribution directory.

4.3 Installing the Software

Once the software has been properly configured and successfully made, you are
ready to install it. You will need to have write permission to the installation
directories you specified in the Make-common file. Typically, the installation is
done as root. From the top level LDAP source directory, type

18

make install

You should examine the output of this command carefully to make sure everything
is installed correctly. Slapd, slurpd, and their configuration files, slapd.conf,
slapd.at.conf, and slapd.oc.conf will be installed in the ETCDIR
directory you specified in the Make-common file.

This command will install the entire LDAP distribution. If you only want to install
slapd and slurpd, you could do something like this:

(cd servers/slapd; make install)
(cd servers/slurpd; make install)

NOTE: The installation process installs configuration files as well as binaries.
Existing configuration files are first moved to a name with a dash '-' appended,
e.g., slapd.conf is moved to slapd.conf-. If you install things twice,
however, you can lose your existing configuration files.

19

5. The slapd Configuration File

Once the software has been built and installed, you are ready to configure it for use
at your site. All slapd runtime configuration is accomplished through the
slapd.conf file, installed in the ETCDIR directory you specified in the Make-
common file. An alternate configuration file can be specified via a command-line
option to slapd or slurpd (see Sections 5 and 8, respectively). This section
describes the general format of the config file, followed by a detailed description of
each config file option.

5.1 Configuration File Format

The slapd.conf file consists of a series of global configuration options that
apply to slapd as a whole (including all backends), followed by zero or more
database backend definitions that contain information specific to a backend instance.

Global options can be overridden in a backend (for options that appear more than
once, the last appearance in the slapd.conf file is used). Blank lines and
comment lines beginning with a ‘#’ character are ignored. If a line begins with
white space, it is considered a continuation of the previous line. The general format
of slapd.conf is as follows:

comment - these options apply to every database
<global config options>
first database definition & config options
database <backend 1 type>
<config options specific to backend 1>
second database definition & config options
database <backend 2 type>
<config options specific to backend 2>
subsequent database definitions & config options
...

Configuration line arguments are separated by white space. If an argument contains
white space, the argument should be enclosed in double quotes “like this”. If an
argument contains a double quote or a backslash character ‘\’, the character should
be preceded by a backslash character ‘\’.

The distribution contains an example configuration file that will be installed in the
ETCDIR directory. Also provided are slapd.at.conf, which contains many
commonly used attribute definitions, and slapd.oc.conf, which contains many
commonly used object class definitions. These files can be included from the
slapd configuration file (see below).

5.2 Configuration File Options

This section separates the configuration file options into global and backend-
specific categories, describing each option and its default value (if any), and giving
an example of its use.

20

5. 2. 1 Global Options

Options described in this section apply to all backends, unless specifically
overridden in a backend definition. Option arguments that should be replaced by
actual text are shown in brackets <>.

access to <what> [by <who> <accesslevel>]+

This option grants access (specified by <accesslevel>) to a set of entries
and/or attributes (specified by <what>) by one or more requesters (specified
by <who>). See Section 5.3 on access control for more details and
examples.

attribute <name> [<name2>] { bin | ces | cis | tel | dn }

This option associates a syntax with an attribute name. By default, an
attribute is assumed to have syntax cis. An optional alternate name can be
given for an attribute. The possible syntaxes and their meanings are

bin binary
ces case exact string (case must match during comparisons)
cis case ignore string (case is ignored during comparisons)
tel telephone number string (like cis but blanks and dashes ‘-’

are ignored during comparisons)
dn distinguished name

defaultaccess { none | compare | search | read | write }

This option specifies the default access to grant requesters not matched by
any other access line (see Section 5.3). Note that an access level implies all
lesser access levels (e.g., write access implies read, search and
compare).

Default:

defaultaccess read

include <filename>

This option specifies that slapd should read additional configuration
information from the given file before continuing with the next line of the
current file. The included file should follow the normal slapd config file
format.

Note: You should be careful when using this option – there is no small limit
on the number of nested include options, and no loop detection is done.

loglevel <integer>

This option specifies the level at which debugging statements and operation
statistics should be syslogged (currently logged to the syslogd(8)
LOG_LOCAL4 facility). You must have compiled slapd with
-DLDAP_DEBUG for this to work (except for the two stats levels, which are
always enabled). Log levels are additive. To display what numbers
correspond to what kind of debugging, invoke slapd with the -? flag or
consult the table below. The possible values for <integer> are:

21

1 trace function calls
2 debug packet handling
4 heavy trace debugging
8 connection management
16 print out packets sent and received
32 search filter processing
64 configuration file processing
128 access control list processing
256 stats log connections/operations/results
512 stats log entries sent
1024 print communication with shell backends
2048 print entry parsing debugging

Example:

loglevel 255

This will cause lots and lots of debugging information to be syslogged.

Default:

loglevel 256

objectclass <name>
[requires <attrs>]
[allows <attrs>]

This option defines the schema rules for the given object class. Used in
conjunction with the schemacheck option. See Section 5.4 for more
details.

referral <url>

This option specifies the referral to pass back when slapd cannot find a local
database to handle a request.

Example:

referral ldap://ldap.itd.umich.edu

This will refer non-local queries to the LDAP server at the University of
Michigan. Smart LDAP clients can re-ask their query at that server, but note
that most of these clients are only going to know how to handle simple
LDAP URLs that contain a host part and optionally a distinguished name
part.

schemacheck { on | off }

This option turns schema checking on or off. If schema checking is on,
entries added or modified will be checked to ensure they obey the schema
rules implied by their object class(es) as defined by the corresponding
objectclass option(s). If schema checking is off this check is not done.

Default:

schemacheck off

22

sizelimit <integer>

This option specifies the maximum number of entries to return from a
search operation.

Default:

sizelimit 500

srvtab <filename>

This option specifies the srvtab file in which slapd can find the kerberos
keys necessary for authenticating clients using kerberos. This option is only
meaningful if you are using kerberos authentication, which must be enabled
at compile time by including the appropriate definitions in the Make-
common file.

Default:

srvtab /etc/srvtab

timelimit <integer>

This option specifies the maximum number of seconds (in real time) slapd
will spend answering a search request. If a request is not finished in this
time, a result indicating an exceeded timelimit will be returned.

Default:

timelimit 3600

5. 2. 2 General Backend Options

Options in this section only apply to the backend in which they are defined. They
are supported by every type of backend.

database <databasetype>

This option marks the beginning of a new database instance definition.
<databasetype> should be one of ldbm, shell, or passwd,
depending on which backend will serve the database.

Example:

database ldbm

This marks the beginning of a new LDBM backend database instance
definition.

lastmod { on | off }

This option controls whether slapd will automatically maintain the
modifiersName, modifyTimestamp, creatorsName, and
createTimestamp attributes for entries.

Default:

lastmod off

23

readonly { on | off }

This option puts the database into “read-only” mode. Any attempts to
modify the database will return an “unwilling to perform” error.

Default:

readonly off

replica host=<hostname>[:<port>]
"binddn=<DN>"
bindmethod={ simple | kerberos }
[credentials=<password>]
[srvtab=<filename>]

This option specifies a replication site for this database. The host=
parameter specifies a host and optionally a port where the slave slapd
instance can be found. Either a domain name or IP address may be used for
<hostname>. If <port> is not given, the standard LDAP port number
(389) is used.

The binddn= parameter gives the DN to bind as for updates to the slave
slapd. It should be a DN which has read/write access to the slave slapd’s
database, typically given as a “rootdn” in the slave’s config file. It must
also match the updatedn option in the slave slapd's config file. Since
DNs are likely to contain embedded spaces, the entire "binddn=<DN>"
string should be enclosed in quotes.

bindmethod is either simple or kerberos, depending on whether
simple password-based authentication or kerberos authentication is to be
used when connecting to the slave slapd. Simple authentication requires a
valid password be given. Kerberos authentication requires a valid srvtab
file.

The credentials= parameter, which is only required if using simple
authentication, gives the password for binddn on the slave slapd.

The srvtab= parameter, which is only required if using kerberos,
specifies the filename which holds the kerberos key for the slave slapd. If
omitted, /etc/srvtab is used.

See Section 10 for more details on replication.

replogfile <filename>

This option specifies the name of the replication log file to which slapd will
log changes. The replication log is typically written by slapd and read by
slurpd. Normally, this option is only used if slurpd is being used to
replicate the database. However, you can also use it to generate a
transaction log, if slurpd is not running. In this case, you will need to
periodically truncate the file, since it will grow indefinitely otherwise.

See Section 10 for more details on replication.

rootdn <dn>

This option specifies the DN of an entry that is not subject to access control
or administrative limit restrictions for operations on this database.

24

Example:

rootdn "cn=Manager, o=U of M, c=US"

rootkrbname <kerberosname>

This option specifies a kerberos name for the DN given above that will
always work, regardless of whether an entry with the given DN exists or
has a krbName attribute. This option is useful when creating a database and
also when using slurpd to provide replication service (see Section 10).

Example:

rootkrbname admin@umich.edu

rootpw <password>

This option specifies a password for the DN given above that will always
work, regardless of whether an entry with the given DN exists or has a
password. This option is useful when creating a database and also when
using slurpd to provide replication service (see Section 10).

Example:

rootpw secret

suffix <dn suffix>

This option specifies the DN suffix of queries that will be passed to this
backend database. Multiple suffix lines can be given, and at least one is
required for each database definition.

Example:

suffix "o=University of Michigan, c=US"

Queries with a DN ending in “o=University of Michigan, c=US”
will be passed to this backend.

Note: when the backend to pass a query to is selected, slapd looks at the
suffix line(s) in each database definition in the order they appear in the file.
Thus, if one database suffix is a prefix of another, it must appear after it in
the config file.

updatedn <dn>

This option is only applicable in a slave slapd. It specifies the DN allowed
to make changes to the replica (typically, this is the DN slurpd binds as
when making changes to the replica).

5. 2. 3 LDBM Backend-Specific Options

Options in this category only apply to the LDBM backend database. That is, they
must follow a “database ldbm” line and come before any other “database”
line.

cachesize <integer>

This option specifies the size in entries of the in-memory cache maintained
by the LDBM backend database instance.

25

Default:

cachesize 1000

dbcachesize <integer>

This option specifies the size in bytes of the in-memory cache associated
with each open index file. If not supported by the underlying database
method, this option is ignored without comment. Increasing this number
uses more memory but can cause a dramatic performance increase,
especially during modifies or when building indexes.

Default:

dbcachesize 100000

directory <directory>

This option specifies the directory where the LDBM files containing the
database and associated indexes live.

Default:

directory /usr/tmp

index {<attrlist> | default} [pres,eq,approx,sub,none]

This option specifies the indexes to maintain for the given attribute. If only
an <attrlist> is given, all possible indexes are maintained.

Example:

index cn
index sn,uid eq,sub,approx
index default none

This example causes all indexes to be maintained for the cn attribute;
equality, substring, and approximate indexes for the sn and uid attributes;
and no indexes for all other attributes.

mode <integer>

This option specifies the file protection mode that newly created database
index files should have.

Default:

mode 0600

5. 2. 4 Shell Backend-Specific Options

bind <pathname>
unbind <pathname>
search <pathname>
compare <pathname>
modify <pathname>
modrdn <pathname>
add <pathname>
delete <pathname>
abandon <pathname>

26

These options specify the pathname of the command to execute in response
to the given LDAP operation. The command given should understand and
follow the input/output conventions described in Appendix B.

Example:

search /usr/local/bin/search.sh

Note that you need only supply those commands you want the backend to
handle. Operations for which a command is not supplied will be refused
with an “unwilling to perform” error.

5. 2. 5 Password Backend-Specific Options

Options in this category only apply to the PASSWD backend database. That is, they
must follow a “database passwd” line and come before any other
“database” line.

file <filename>

This option specifies an alternate passwd file to use.

Default:

file /etc/passwd

5.3 Access Control

Access to slapd entries and attributes is controlled by the access configuration file
directive. The general form of an access line is:

<access directive> ::= access to <what>
[by <who> <access>]+

<what> ::= * | [dn=<regex>] [filter=<ldapfilter>]
[attrs=<attrlist>]

<who> ::= * | self | dn=<regex> | addr=<regex> |
domain=<regex> | dnattr=<dn attribute>

<access> ::= [self]none | [self]compare | [self]search
| [self]read | [self]write

where the <what> part selects the entries and/or attributes to which the access
applies, the <who> part specifies which entities are granted access, and the
<access> part specifies the access granted. Multiple <who> <access> pairs
are supported, allowing many entities to be granted different access to the same set
of entries and attributes.

5. 3. 1 What to control access to

The <what> part of an access specification determines the entries and attributes to
which the access control applies. Entries can be selected in two ways: by a regular
expression matching the entry’s distinguished name:

dn=<regular expression>

NOTE: The DN pattern specified should be "normalized", meaning that there
should be no extra spaces, and commas should be used to separate components. An

27

example normalized DN is "cn=Babs Jensen,o=University of
Michigan,c=US". An example of a non-normalized DN is "cn =Babs
Jensen; o=University of Michigan, c=US".

Or, entries may be selected by a filter matching some attribute(s) in the entry:

filter=<ldap filter>

where <ldap filter> is a string representation of an LDAP search filter, as
described in RFC 1588. The special entry selector “*” is used to select any entry,
and is a convenient shorthand for the equivalent “dn=.*” selector.

Attributes within an entry are selected by including a comma-separated list of
attribute names in the <what> selector:

attrs=<attribute list>

Access to the entry itself must be granted or denied using the special attribute name
"entry". Note that giving access to an attribute is not enough; access to the entry
itself through the "entry" attribute is also required. The complete examples at the
end of this section should help clear things up.

5. 3. 2 Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that
access is granted to “entities” not “entries.” Entities can be specified by the special
“*” identifier, matching any entry, the keyword “self” matching the entry
protected by the access, or by a regular expression matching an entry’s
distinguished name:

dn=<regular expression>

NOTE: The DN pattern specified should be "normalized", meaning that there
should be no extra spaces, and commas should be used to separate components.

Or entities can be specified by a regular expression matching the client’s IP address
or domain name:

addr=<regular expression>
domain=<regular expression>

or by an entry listed in a DN-valued attribute in the entry to which the access
applies:

dnattr=<dn-valued attribute name>

The dnattr specification is used to give access to an entry whose DN is listed in
an attribute of the entry (e.g., give access to a group entry to whoever is listed as
the owner of the group entry).

28

5. 3. 3 The access to grant

The kind of <access> granted can be one of the following:

none | compare | search | read | write

Note that each level implies all lower levels of access. So, for example, granting
someone write access to an entry also grants them read, search, and
compare access.

5. 3. 4 Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or
attribute, slapd compares the entry and/or attribute to the <what> selectors given in
the configuration file. Access directives local to the current database are examined
first, followed by global access directives. Within this priority, access directives are
examined in the order in which they appear in the config file. Slapd stops with the
first <what> selector that matches the entry and/or attribute. The corresponding
access directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the
access directive selected above, in the order in which they appear. It stops with the
first <who> selector that matches the requester. This determines the access the
entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the
access requested by the client. If it allows greater or equal access, access is granted.
Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the
configuration file important. If one access directive is more specific than another in
terms of the entries it selects, it should appear first in the config file. Similarly, if
one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

5. 3. 5 Access Control Examples

The access control facility described above is quite powerful. This section shows
some examples of its use. First, some simple examples:

access to * by * read

This access directive grants read access to everyone. If it appears alone it is the
same as the following defaultaccess line.

defaultaccess read

The following example shows the use of a regular expression to select the entries
by DN in two access directives where ordering is significant.

access to dn=".*, o=U of M, c=US"
by * search

29

access to dn=".*, c=US"
by * read

Read access is granted to entries under the c=US subtree, except for those entries
under the “o=University of Michigan, c=US” subtree, to which search
access is granted. If the order of these access directives was reversed, the U-M-
specific directive would never be matched, since all U-M entries are also c=US
entries.

The next example again shows the importance of ordering, both of the access
directives and the “by” clauses. It also shows the use of an attribute selector to
grant access to a specific attribute and various <who> selectors.

access to dn=".*, o=U of M, c=US" attr=homePhone
by self write
by dn=".*, o=U of M, c=US" search
by domain=.*\.umich\.edu read
by * compare

access to dn=".*, o=U of M, c=US"
by self write
by dn=".*, o=U of M, c=US" search
by * none

This example applies to entries in the “o=U of M, c=US” subtree. To all
attributes except homePhone, the entry itself can write them, other U-M entries
can search by them, anybody else has no access. The homePhone attribute is
writable by the entry, searchable by other U-M entries, readable by clients
connecting from somewhere in the umich.edu domain, and comparable by
everybody else.

Sometimes it is useful to permit a particular DN to add or remove itself from an
attribute. For example, if you would like to create a group and allow people too add
and remove only their own DN from the member attribute, you could accomplish it
with an access directive like this:

access to attr=member,entry
by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the
member attribute. The selfwrite access selector says that such members can
only add or delete their own DN from the attribute, not other values. The addition
of the entry attribute is required because access to the entry is required to access
any of the entry's attributes.

Note that the attr=member construct in the <what> clause is a shorthand for the
clause "dn=* attr=member" (i.e., it matches the member attribute in all
entries).

5.4 Schema Enforcement

The objectclass and schemacheck configuration file options can be used to
enforce schema rules on entries in the directory. The schema rules are defined by

30

one or more objectclass lines, and enforcement is turned on or off via the
schemacheck option. The format of an objectclass line is:

objectclass <name>
[requires <attrs>]
[allows <attrs>]

This option defines the schema rules for the object class given by <name>. Schema
rules consist of the attributes the entry is required to have (given by the requires
<attrs> clause) and those attributes that it may optionally have (given by the
allows <attrs> clause). In both clauses, <attrs> is a comma-separated list
of attribute names.

Note that object class inheritance (that is, defining one object class in terms of
another) is not supported directly. All of an object class's required and allowed
attributes must be listed in the objectclass definition.

For example, to define an objectclass called myPerson, you might include a
definition like this:

objectclass myperson
requires cn, sn, objectclass
allows mail, phone, fax

To then enforce this rule (i.e., to make sure an entry with an objectclass of
myperson contains the cn, sn and objectclass attributes, and that it contains
no other attributes besides mail, phone, and fax), turn on schema checking with
a line like this:

schemacheck on

5.5 Configuration File Example

The following is an example configuration file, interspersed with explanatory text.
It defines two databases to handle different parts of the X.500 tree; both are LDBM
database instances. The line numbers shown are provided for reference only and are
not included in the actual file. First, the global configuration section:

1. # example config file – global configuration section
2. include /usr/local/etc/slapd.at.conf
3. include /usr/local/etc/slapd.oc.conf
4. schemacheck on
5. referral ldap://ldap.itd.umich.edu

Line 1 is a comment. Lines 2 and 3 include other config files containing attribute
and object class definitions, respectively. Line 4 turns on schema checking. The
referral option on line 5 means that queries not local to one of the databases
defined below will be referred to the LDAP server running on the standard port
(389) at the host ldap.itd.umich.edu.

The next section of the configuration file defines an LDBM backend that will handle
queries for things in the “o=University of Michigan, c=US” portion of
the tree. The database is to be replicated to two slave slapds, one on truelies,

31

the other on judgmentday. Indexes are to be maintained for several attributes,
and the userPassword attribute is to be protected from unauthorized access.

1. # ldbm definition for the U-M database
2. database ldbm
3. suffix "o=University of Michigan, c=US"
4. directory /usr/local/ldbm-umich
6. rootdn "cn=Manager, o=University of Michigan, c=US"
7. rootpw secret
8. replogfile /usr/local/ldbm-umich/slapd.replog
9. replica host=truelies.rs.itd.umich.edu:389
10. binddn=“cn=Replicator, o=U of M, c=US”
11. bindmethod=simple credentials=secret
12.replica host=judgmentday.rs.itd.umich.edu
13. binddn=“cn=Replicator, o=U of M, c=US”
14. bindmethod=kerberos
15. srvtab=/etc/srvtab.judgmentday
16.# ldbm indexed attribute definitions
17.index cn,sn,uid pres,eq,approx,sub
18.index objectclass pres,eq
19.index default none
20.# ldbm access control definitions
21.defaultaccess read
22.access to attr=userpassword
23. by self write
24. by dn="cn=Admin, o=University of Michigan, c=US" write
25. by * compare

Line 1 is a comment. The start of the database definition is marked by the database
keyword on line 2. Line 3 specifies the DN suffix for queries to pass to this
database. Line 4 specifies the directory in which the database files will live

Lines 6 and 7 identify the database “super user” entry and associated password.
This entry is not subject to access control or size or time limit restrictions.

Lines 8 through 15 are for replication. Line 8 specifies the replication log file
(where changes to the database are logged – this file is written by slapd and read by
slurpd). Lines 9 through 11 specify the hostname and port for a replicated host, the
DN to bind as when performing updates, the bind method (simple) and the
credentials (password) for the binddn. Lines 12 through 15 specify a second
replication site, using kerberos instead of simple authentication. See Section 10 on
slurpd for more information on these options.

Lines 16 through 19 indicate the indexes to maintain for various attributes. The
default is not to maintain any indexes (line 19).

Lines 20 through 25 specify access control for entries in the database. For all
entries, the userPassword attribute is writable by the entry and the “admin”
entry, comparable by everyone else. All other attributes allow read access by default
(line 21). Note that the special "entry" attribute is not required in the access
directive beginning on line 22. This is because the default access is read.

The next section of the example configuration file defines another LDBM database.
This one handles queries involving the “o="Babs, Inc.", c=US” subtree.

32

1. # ldbm definition for Babs, Inc. database
2. database ldbm
3. suffix "o=\"Babs, Inc.\", c=US"
4. directory /usr/local/ldbm-babs
5. rootdn "cn=Babs, o=\"Babs, Inc.\", c=US"
6. index default

Note the use of ‘\’ to escape the quotes necessary in the distinguished names given
on lines 3 and 5. By default, all indexes are maintained for every attribute in an
entry.

33

6. Running slapd

Slapd can be run in two different modes, stand-alone or from inetd(8). Stand-alone
operation is recommended, especially if you are using the LDBM backend. This
allows the backend to take advantage of caching and avoids concurrency problems
with the LDBM index files. If you are running only a PASSWD or SHELL
backend, running from inetd is an option. How to do this is described in the next
section, after the command-line options and stand-alone daemon operation are
described.

6.1 Command-Line Options

Slapd supports the following command-line options.

-d <level> | ?

This option sets the slapd debug level to <level>. When level is a ‘?’
character, the various debugging levels are printed and slapd exits,
regardless of any other options you give it. Current debugging levels are

1 trace function calls
2 debug packet handling
4 heavy trace debugging
8 connection management
16 print out packets sent and received
32 search filter processing
64 configuration file processing
128 access control list processing
256 stats log connections/operations/results
512 stats log entries sent
1024 print communication with shell backends
2048 print entry parsing debugging
65535 enable all debugging

Debugging levels are additive. That is, if you want to trace function calls
and watch the config file being processed, you would set level to the sum of
those two levels (in this case, 65). Consult <ldap.h> for more details.

Note that slapd must have been compiled with -DLDAP_DEBUG defined for
any debugging information beyond the two stats levels to be available.

-f <filename>

This option specifies an alternate configuration file for slapd.

-i

This option tells slapd that it is running from inetd instead of as a stand-
alone server. See the next section on running slapd from inetd for more
details.

-p <port>

This option specifies an alternate TCP port on which slapd should listen for
connections. The default port is 389.

34

6.2 Running slapd as a Stand-Alone Daemon

In general, slapd is run like this:

$(ETCDIR)/slapd [<option>]*

where ETCDIR has the value you gave in the Make-common file during the pre-
build configuration, and <option> is one of the options described below. Unless
you have specified a debugging level, slapd will automatically fork and detach itself
from its controlling terminal and run in the background. Any of the options given
above can be given to slapd to point it at a different configuration file, listen on
another port, etc.

To kill off slapd safely, you should give a command like this

kill -TERM `cat $(ETCDIR)/slapd.pid`

Killing slapd by a more drastic method may cause its LDBM databases to be
corrupted, as it may need to flush various buffers before it exits. Note that slapd
writes its pid to a file called slapd.pid in the ETCDIR you configured in Make-
common. You can change the location of this pid file by changing the
SLAPD_PIDFILE variable in include/ldapconfig.h.edit.

Slapd will also write its arguments to a file called slapd.args in the ETCDIR
you configured in Make-common. You can change the location of the args file by
changing the SLAPD_ARGSFILE variable in include/ldapconfig.h.edit.

6.3 Running slapd from inetd

First, make sure that running from inetd(8) is a good idea. If you are using the
LDBM backend, it is not. If you are in a high-volume environment, the overhead of
running from inetd also makes it a bad idea. Otherwise, you may proceed with the
two steps necessary.

Step 1 is to add a line like this to your /etc/services file:

ldap 389 # ldap directory service

Step 2 is to add a line like this to your /etc/inetd.conf file:

ldap stream tcp nowait nobody $(ETCDIR)/slapd slapd -i

where ETCDIR has the value you gave it in the Make-common file during pre-
build configuration. Finally, send inetd a HUP signal, and you should be all set.

35

7. Monitoring Slapd

Slapd supports a monitoring interface you can use to find out many useful bits of
information about what slapd is currently doing, how many connections it has, how
many threads are working, etc. You can access the monitor feature by doing a base
object search of the SLAPD_MONITOR_DN from include/ldapconfig.h
with any kind of valid filter (e.g., "(objectclass=*)"). By default, this DN is
set to "cn=monitor". You will get one entry returned to you, with the following
attributes:

version: slapd <version> (<date>)

This attribute identifies the slapd server software by name, version, and
build date, e.g., slapd 3.3 (Thu May 21 14:19:03 EDT 1996)

threads: <integer>

This attribute indicates the number of threads (operations) currently
outstanding in slapd.

connection: <fd> : <opentime> : <opsinitiated> :
<opscompleted> : <binddn> : [<rw>]

This multi-valued attribute summarizes information for each open
connection. The information given is <fd>, the file descriptor;
<opentime>, the time the connection was opened in UTC format;
<opsinitiated>, the number of operations initiated over the
connection; <opscompleted>, the number of operations completed over
the connection; <binddn>, the DN currently bound to the connection; and
optionally <rw>, indicating whether the connection is currently blocked for
read or write..

currentconnections: <integer>

The current number of connections.

totalconnections: <integer>

The total number of connections handled by slapd since it started.

dtablesize: <integer>

The size of slapd's file descriptor table.

writewaiters: <integer>

The number of threads blocked waiting to write data to a client.

readwaiters: <integer>

The number of threads blocked waiting to read data from a client.

opsinitiated: <integer>

The total number of operations initiated by slapd since it started.

36

opscompleted: <integer>

The total number of operations completed by slapd since it started.

entriessent: <integer>

The total number of entries sent to clients by slapd since it started.

bytessent: <integer>

The total number of bytes sent to clients by slapd since it started.

currenttime: <UTC time>

Slapd's idea of the current time.

starttime: <integer>

The time slapd was started.

nbackends: <integer>

The number of backends currently being served by slapd.

concurrency: <integer>

Under Solaris 2.x only, an indication of the current level of thread
concurrency.

Note that slapd takes a snapshot of this information and returns it to you. No
attempt is made to ensure that the information is consistent (i.e., if an operation
thread is modifying one of these things when the monitor thread is reading it,
strange results could be returned).

You should be able to use any LDAP client to retrieve this information. Here's how
you might do it using the ldapsearch(1) client:

ldapsearch -s base -b cn=monitor 'objectclass=*'

37

8. Database Creation and Maintenance Tools

This section tells you how to create a slapd database from scratch, and how to do
trouble shooting if you run into problems. There are two ways to create a database.
First, you can create the database on-line using LDAP. With this method, you
simply start up slapd and add entries using the LDAP client of your choice. This
method is fine for relatively small databases (a few hundred or thousand entries,
depending on your requirements).

The second method of database creation is to do it off-line, using the index
generation tools. This method is best if you have many thousands of entries to
create, which would take an unacceptably long time using the LDAP method, or if
you want to ensure the database is not accessed while it is being created.

8.1 Creating a database over LDAP

With this method, you use the LDAP client of your choice (e.g., the ldapadd(1)
tool) to add entries, just like you would once the database is created. You should be
sure to set the following configuration options before starting slapd:

suffix <dn>

As described in the preceding section, this option says what entries are to be held
by this database. You should set this to the DN of the root of the subtree you are
trying to create. For example

suffix "o=University of Michigan, c=US"

You should be sure to specify a directory where the index files should be created:

directory <directory>

For example:

directory /usr/local/umich-slapd

You need to make it so you can connect to slapd as somebody with permission to
add entries. This is done through the following two options in the database
definition:

rootdn <dn>
rootpw <passwd>

These options specify a DN and password that can be used to authenticate as the
“superuser” entry of the database (i.e., the entry allowed to do anything). The DN
and password specified here will always work, regardless of whether the entry
named actually exists or has the password given. This solves the chicken-and-egg
problem of how to authenticate and add entries before any entries yet exist.

Finally, you should make sure that the database definition contains the index
definitions you want:

38

index {<attrlist> | default} [pres,eq,approx,sub,none]

For example, to index the cn, sn, uid and objectclass attributes the
following index configuration lines could be used.

index cn,sn,uid
index objectclass pres,eq
index default none

See Section 4 on the configuration file for more details on this option. Once you
have configured things to your liking, start up slapd, connect with your LDAP
client, and start adding entries. For example, to add a the U of M entry followed by
a Postmaster entry using the ldapadd tool, you could create a file called
/tmp/newentry with the contents:

o=University of Michigan, c=US
objectClass=organization
o=University of Michigan
description=University of Michigan at Ann Arbor

cn=Postmaster, o=University of Michigan, c=US
objectClass=organizationalRole
cn=Postmaster
description=U of M postmaster - postmaster@umich.edu

and then use a command like this to actually create the entry:

ldapadd -f /tmp/newentry -D "cn=Manager, o=University of
Michigan, c=US" -w secret

The above command assumes that you have set rootdn to “cn=Manager,
o=University of Michigan, c=US” and rootpw to “secret”.

8.2 Creating a database off-line

The second method of database creation is to do it off-line, using the index
generation tools described below. This method is best if you have many thousands
of entries to create, which would take an unacceptably long time using the LDAP
method described above. These tools read the slapd configuration file and an input
file containing a text representation of the entries to add. They produce the LDBM
index files directly. There are several important configuration options you will want
to be sure and set in the config file database definition first:

suffix <dn>

As described in the preceding section, this option says what entries are to be held
by this database. You should set this to the DN of the root of the subtree you are
trying to create. For example

suffix "o=University of Michigan, c=US"

You should be sure to specify a directory where the index files should be created:

directory <directory>

39

For example:

directory /usr/local/umich-slapd

Next, you probably want to increase the size of the in-core cache used by each open
index file. For best performance during index creation, the entire index should fit in
memory. If your data is too big for this, or your memory too small, you can still
make it pretty big and let the paging system do the work. This size is set with the
following option:

dbcachesize <integer>

For example:

dbcachesize 50000000

This would create a cache 50 MB big, which is pretty big (at U-M, our database has
about 125K entries, and our biggest index file is about 45 MB). Experiment with
this number a bit, and the degree of parallelism (explained below), to see what
works best for your system. Remember to turn this number back down once your
index files are created and before you run slapd.

Finally, you need to specify which indexes you want to build. This is done by one
or more index options.

index {<attrlist> | default} [pres,eq,approx,sub,none]

For example:

index cn,sn,uid pres,eq,approx
index default none

This would create presence, equality and approximate indexes for the cn, sn, and
uid attributes, and no indexes for any other attributes. See the configuration file
section for more information on this option.

8. 2. 1 The ldif2ldbm program

Once you’ve configured things to your liking, you create the indexes by running the
ldif2ldbm program:

ldif2ldbm -i <inputfile> -f <slapdconfigfile>
[-d <debuglevel>] [-j <integer>]
[-n <databasenumber>] [-e <etcdir>]

The arguments have the following meanings:

-i <inputfile>

Specifies the LDIF input file containing the entries to add in text form (described
below in Section 8.3).

-f <slapdconfigfile>

40

Specifies the slapd configuration file that tells where to create the indexes, what
indexes to create, etc.

-d <debuglevel>

Turn on debugging, as specified by <debuglevel>. The debug levels are the
same as for slapd (see Section 6.1).

-j <integer>

An optional argument that specifies that at most <integer> processes should be
started in parallel when building the indexes. The default is 1. If set to a value
greater than one, ldif2ldbm will create at most that many subprocesses at a time
when building the indexes. A separate subprocess is created to build each attribute
index. Running these processes in parallel can speed things up greatly, but beware
of creating too many processes, all competing for memory and disk resources.

-n <databasenumber>

An optional argument that specifies the configuration file database for which to
build indices. The first database listed is "1", the second "2", etc. By default, the
first ldbm database in the configuration file is used.

-e <etcdir>

An optional argument that specifies the directory where ldif2ldbm can find the
other database conversion tools it needs to execute (ldif2index and friends).
The default is the installation ETCDIR.

The next sections describe the programs invoked by ldif2ldbm when it is building
indexes. Normally, these programs are invoked for you, but occasionally you may
want to invoke them yourself.

8. 2. 2 The ldif2index program

Sometimes it may be necessary to create a new attribute index file without
disturbing the rest of the database. This is possible using the ldif2index program.
ldif2index is invoked like this

ldif2index -i <inputfile> -f <slapdconfigfile>
[-d <debuglevel>] [-n <databasenumber>] <attr>

Where the -i, -f, -d, and -n options are the same as for the ldif2ldbm program.
<attr> is the attribute to build an index for. Which indexes are built (e.g.,
equality, substring, etc.) is controlled by the corresponding index line in the slapd
configuration file.

You can use the ldbmcat program to create a suitable LDIF input file from an
existing LDBM database.

41

8. 2. 3 The ldif2id2entry program

The ldif2id2entry program is normally invoked from ldif2ldbm. It is used to
convert an LDIF text file into an id2entry index. It is unlikely that you would
need to invoke it yourself, but if you do it works like this

ldif2id2entry -i <inputfile> -f <slapdconfigfile>
[-d <debuglevel>] [-n <databasenumber>]

The arguments are the same as for the ldif2ldbm program.

8. 2. 4 The ldif2id2children program

The ldif2id2children program is normally invoked from ldif2ldbm. It is used to
convert an LDIF text file into id2children and dn2id indexes. Occasionally, it
may be necessary to run this program yourself, for example if one of these indexes
has become corrupted. ldif2id2children is invoked like this

ldif2id2children -i <inputfile> -f <slapdconfigfile>
[-d <debuglevel>] [-n <databasenumber>]

The arguments are the same as for the ldif2ldbm program. You can use the ldbmcat
program to create a suitable LDIF input file from an existing LDBM database.

8. 2. 5 The ldbmcat program

The ldbmcat program is used to convert an id2entry index back into its LDIF
text format. This can be useful when you want to make a human-readable backup of
your database, or as an intermediate step in creating a new index using the
ldif2index program. The program is invoked like this:

ldbmcat [-n] <filename>

where <filename> is the name of the id2entry index file. The corresponding
LDIF output is written to standard output.

The -n option can be used to prevent the printing of entry IDs in the LDIF format.
If you are creating an LDIF format for use as input to ldif2index or anything by
ldif2ldbm, you should not use the -n option (because the entry IDs must match
those already in the id2entry file). If you are just making a backup of your data,
you can use the -n option to save space.

8. 2. 6 The ldif program

The ldif program is used to convert arbitrary data values to LDIF format. This can
be useful when writing a program or script to create the LDIF file you will feed into
the ldif2ldbm program, or when writing a SHELL backend. ldif takes an attribute
name as an argument, and reads the attribute value(s) from standard input. It
produces the LDIF formatted attribute line(s) on standard output. The usage is:

ldif [-b] <attrname>

42

where <attrname> is the name of the attribute. Without the -b option, ldif
considers each line of standard input to be a separate value of the attribute.

The -b option can be used to force ldif to interpret its input as a single raw binary
value. This option is useful when converting binary data such as a jpegPhoto or
audio attribute.

8.3 The LDIF text entry format

The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a
simple text format. The basic form of an entry is:

[<id>]
dn: <distinguished name>
<attrtype>: <attrvalue>
<attrtype>: <attrvalue>
...

where <id> is the optional entry ID (a positive decimal number). Normally, you
would not supply the <id>, allowing the database creation tools to do that for you.
The ldbmcat program, however, produces an LDIF format that includes <id> so
that new indexes created will be consistent.

A line may be continued by starting the next line with a single space or tab
character. e.g.,

dn: cn=Barbara J Jensen, o=University of Michi
 gan, c=US

Multiple attribute values are specified on separate lines. e.g.,

cn: Barbara J Jensen
cn: Babs Jensen

If an <attrvalue> contains a non-printing character, or begins with a space or a
colon ‘:’, the <attrtype> is followed by a double colon and the value is encoded
in base 64 notation. e.g., the value “ begins with a space” would be
encoded like this:

cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by blank lines. Here’s an
example of an LDIF file containing three entries.

dn: cn=Barbara J Jensen, o=University of Michi
 gan, c=US
cn: Barbara J Jensen
cn: Babs Jensen
objectclass: person
sn: Jensen

dn: cn=Bjorn J Jensen, o=University of Michi

43

 gan, c=US
cn: Bjorn J Jensen
cn: Bjorn Jensen
objectclass: person
sn: Jensen

dn: cn=Jennifer J Jensen, o=University of Michi
 gan, c=US
cn: Jennifer J Jensen
cn: Jennifer Jensen
objectclass: person
sn: Jensen
jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
 A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
 ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG
...

Notice that the jpegPhoto in Jennifer Jensen’s entry is encoded using base 64.
The ldif program (described in Section 8.2.6) can be used to produce the LDIF
format.

NOTE: Trailing spaces are not trimmed from values in an LDIF file. Nor are
multiple internal spaces compressed. If you don't want them in your data, don't put
them there.

8.4 Converting from QUIPU EDB format to LDIF format

If you have directory data that is or was held in a QUIPU DSA (available as part of
the ISODE package), you will want to convert the EDB files used by QUIPU into
an LDIF file. The edb2ldif program is provided to do most of the conversion for
you. Once you have an LDIF file, you should follow the steps outlined in section
6.2 above to build an LDBM database for slapd.

8. 4. 1 The edb2ldif program

The edb2ldif program is invoked like this:

edb2ldif [-d] [-v] [-r] [-o] [-b <basedn>]
[-a <addvalsfile>] [-f <fileattrdir>]
[-i <ignoreattr...>] [<edbfile...>]

The LDIF data is written to standard output. The arguments have the following
meanings:

-d

This option enables some debugging output on standard error.

-v

Enable verbose mode that writes status information to standard error, such
as which EDB file is being processed, how many entries have been
converted so far, etc.

44

-r

Recurse through child directories, processing all EDB files found.

-o

Cause local .add file definitions to override the global addfile (see -a
below)

-b <basedn>

Specify the Distinguished Name that all EDB file entries appear below.

-a <addvalsfile>

The LDIF information contained in this file will be appended to each entry.

-f <fileattrdir>

Specify a single directory where all file-based attributes (typically sounds
and images) can be found. If this option is not given, file attributes are
assumed to be located in the same directory as the EDB file that refers to
them.

-i <ignoreattr>

Specify an attribute that should not be converted. You can include as many
-i flags as necessary.

<edbfile>

Specify a particular EDB file (or files) to read data from. By default, the
EDB.root (if it exists) and EDB files in the current directory are used.

When edb2ldif is invoked, it will also look for files named .add in the directories
where EDB files are found and append the contents of the .add file to each entry.
Typically, this feature is used to include inherited attribute values (e.g.,
objectClass) that do not appear in the EDB files.

8. 4. 2 Step-by-step EDB to LDIF conversion

The basic steps to follow when converting your EDB format data to an LDIF file
are:

1. Locate the directory at the top of the EDB file hierarchy that your QUIPU
DSA masters. The EDB file located there should contain the entries for the
first level of your organization or organizational unit. If you are using an
indexed database with QUIPU, you may need to create EDB files from your
index files (using the synctree or qb2edb tools).

2. If you do not have a file named EDB.root in the same directory that
contains your organizational or organizational unit entry, create it now by
hand. Its contents should look something like this:

MASTER
000001

o=University of Michigan

45

objectClass= top & organization & domainRelatedObject &\
quipuObject & quipuNonLeafObject

l= Ann Arbor, Michigan
st= Michigan
o= University of Michigan & UMICH & UM & U-M & U of M
description= The University of Michigan at Ann Arbor
associatedDomain= umich.edu
masterDSA= c=US@cn=Woolly Monkey

3. (Optional) Create a global add file and/or local .add files to take care of
adding any attribute values that do not appear in the EDB files. For
example, if all entries in a particular EDB are person entries and you want to
add the appropriate objectClass attribute value for them, create a file called
.add in the same directory as the person EDB that contains the single line:

objectClass: person

4. Run the edb2ldif program to do the actual conversion. Make sure you are in
the directory that contains the root of the EDB hierarchy (the one where the
EDB.root file resides). Include a -b flag with a base DN one level above
your organizational entry, and include -i flags to ignore any attributes that
are not useful to slapd. E.g., the command:

edb2ldif -v -r -b "c=US" -i iattr -i acl -i xacl -i sacl
-i lacl -i masterDSA -i slaveDSA > ldif

will convert the entire EDB hierarchy to LDIF format and write the result to
a file named ldif. Some attributes that are not useful when running slapd
are ignored. The EDB hierarchy is assumed to reside logically below the
base DN "c=US".

5. Follow the steps outlined in section 8.2 above to produce an LDBM
database from your new LDIF file.

8.5 The ldbmtest program

Occasionally you may find it useful to look at the LDBM database and index files
directly (i.e., without going through slapd). The ldbmtest program is provided for
this purpose. It gives you raw access to the database itself. ldbmtest should be run
line this:

ldbmtest [-d <debuglevel>] [-f <slapdconfigfile>]

The default configuration file in the ETCDIR is used if you don't supply one. By
default, ldbmtest operates on the last database listed in the config file. You can
specify an alternate database, or see the current database with the following
commands.

b specify an alternate backend database
B print out the current backend database

The b command will prompt you for the suffix associated with the database you
want. The database you select can be viewed and modified using a set of two-letter
commands. The first letter selects the command function to perform. Possible
commands and their meanings are as follows.

46

l lookup (do not follow indirection)
L lookup (follow indirection)
t traverse and print keys and data
T traverse and print keys only
x delete an index item
e edit an index item
a add an index item
c create an index file
i insert an entry into an index item

The second letter indicates which index the command applies to. The possible index
selections are as follows.

c id2children index
d dn2id index
e id2entry index
f arbitrary file name
i attribute index

Each command may require additional arguments which ldbmtest will prompt you
for.

To exit ldbmtest, type control-D or control-C.

Note that this is a very raw interface originally developed when testing the database
format. It is provided and minimally documented here for interested parties, but it is
not meant to be used by the inexperienced. See the next section for a brief
description of the LDBM database format.

8.6 The LDBM database format

In normal operation, it is not necessary for you to know much about the LDBM
database format. If you are going to use the ldbmtest program to look at or alter the
database, or if you want a deeper understanding of how indexes are maintained,
some knowledge of how it works could be useful. This section gives an overview
of the database format and how slapd makes use of it.

8. 6. 1 Overview

The LDBM database works by assigning a compact four-byte unique identifier to
each entry in the database. It uses this identifier to refer to entries in indexes. The
database consists of one main index file, called id2entry, which maps from an
entry's unique identifier (EID) to a text representation of the entry itself. Other
index files are maintained, for each indexed attribute for example, that map values
people are likely to search on to lists of EIDs.

Using this simple scheme, many LDAP queries can be answered efficiently. For
example, to answer a search for entries with a surname of “Jensen”, slapd would
first consult the surname attribute index, look up the value “Jensen” and retrieve the
corresponding list of EIDs. Next, slapd would look up each EID in the id2entry
index, retrieve the corresponding entry, convert it from text to LDAP format, and
return it to the client.

47

The following sections give a very brief overview of each type of index and what it
contains. For more detailed information see the paper “An X.500 and LDAP
Database: Design and Implementation,” available in postscript format from

ftp://terminator.rs.itd.umich.edu/ldap/papers/xldbm.ps

8. 6. 2 Attribute index format

The LDBM backend will maintain one index file for each attribute it is asked to
index. Several sets of keys must coexist in this file (e.g., keys for equality and
approximate equality), so the keys are prefixed with a character to ensure
uniqueness. The prefixes are given in the table below

= equality keys
~ approximate equality keys
* substring equality keys
\ continuation keys

Key values are also normalized (e.g., converted to upper case for case ignore
attributes). So, for example, to look up the surname equality value in the example
above using the ldbmtest program, you would look up the value “=JENSEN”.

Substring indexes are maintained by generating all possible N-character substrings
for a value (N is 3 by default). These substrings are then stored in the attribute
index, prefixed by “*”. Additional anchors of “^” and “$” are added at the
beginning and end of words. So, for example the surname of Jensen would cause
the following keys to be entered in the index: ^JE, JEN, ENS, NSE, SEN, EN$.

Approximate values are handled in a similar way, with phonetic codes being
generated for each word in a value and then stored in the index, prefixed by “~”.

Large blocks in the index are split into smaller ones. The smaller blocks are
accessed through a level of indirection provided by the original block. They are
stored in the index using the continuation key prefix of “\”.

8. 6. 3 Other indexes

In addition to the id2entry and attribute indexes, LDBM maintains a number of
other indexes, including the dn2id index and the id2children index. These
indexes provide the mapping between a DN and the corresponding EID, and the
mapping between an EID and the EIDs of the corresponding entry’s children,
respectively.

The dn2id index stores normalized DNs as keys. The data stored is the
corresponding EID.

The id2children index stores EIDs as keys. The data stored is a list of EIDs, just as
for the attribute indexes.

48

9. Performance Tuning

There are several things you can do to tune the performance of slapd for your
system. Most of them have to do with the LDBM backend. LDBM uses an index
mechanism to store and retrieve information in slapd. Each entry is assigned a
unique ID, used to refer to the entry in the indexes. A search for entries with a
surname of “Jensen”, for example, would look up the index entry “=JENSEN” in
the surname index. The data returned is a list of IDs of entries having that value for
the surname attribute. We have found several things to be useful in improving the
performance of this indexing scheme, especially on modify operations.

9.1 The allIDs threshold

Some index entries become so large as to be useless. For example, if every entry in
your database is a person entry, the “=PERSON” index entry in the objectclass
index contains every entry. This returns very little useful information, and can
cause significant delays, especially on updates. To alleviate this problem, we have
introduced the idea of an allIDs index entry.

The allIDs entry stands for a real index entry containing the IDs of every entry in
the database, but it takes up very little space, never needs updating, and can be
manipulated quickly and efficiently. The trade-off is that it does not prune the set of
candidate entries at all during a search. This must be done using other, more “high-
powered” index entries.

You can set the minimum number of IDs that an index entry may contain before it
turns into an allIDs block by changing the SLAPD_LDBM_MIN_MAXIDS variable
in the include/ldapconfig.h file. The actual number is determined at
runtime by the LDBM backend, depending on the block size of the underlying
device (i.e., the number you provide is rounded up to the nearest multiple of a
block size).

9.2 The entry cache

The LDBM backend can be configured to keep a cache of entries in memory. Since
the LDBM database spends much of its time reading entries from the id2entry
file into memory, this cache can greatly speed performance. The trade-off is that the
cache uses some extra memory. The default cache size is 1000 entries. See the
discussion of the cachesize option in Section 5.2.3 on LDBM configuration.

9.3 The DB cache

The LDBM backend uses a number of disk-based index files. If the underlying
hash or B-tree package supports in-memory caching of these files, performance can
be greatly improved, especially on modifies. The size of this in-memory file cache
is given by the dbcachesize option, discussed in more detail in section 5.2.3 on
LDBM configuration. The default dbcachesize is 100K.

49

9.4 Maintain the right indices

Finally, one of the best performance tune-ups you can do is to make sure you are
maintaining the right indices. Too few indices can lead to poor search performance.
Too many indices can lead to poor update performance. For example, the LDBM
backend would be perfectly happy to maintain substring and approximate indices
for the objectclass attribute, but this would not be useful and would just slow
down update operations. If your database has many entries and is handling queries
for substring equality on the surname attribute, you should make sure to maintain a
surname substring index so these queries are answered quickly.

So, take a look at the index lines in your slapd configuration file to ensure that
only those indices that make sense and are needed are being maintained.

50

10. Distributing slapd DATA

For many sites, running one or more slapds that hold an entire subtree of data is
sufficient. But sometimes it may be desirable to have one slapd refer to other slapds
for a certain part of the tree. This can be accomplished by creating a referral entry in
one slapd's database pointing to another slapd. For those familiar with X.500, a
slapd referral entry is similar to an X.500 knowledge reference.

The referral entry acts as a mount point, glueing two slapd databases together. A
referral entry has an objectclass of "referral" and is named by a ref attribute
containing a URL pointing to the slapd holding the data below the mount point.
This mechanism is very general and allows slapd databases that are not normally
hierarchical to be grafted together.

An example should help illustrate things. Suppose your company is running a slapd
and just purchased a new company, also running a slapd. You can easily connect
the two databases by creating an entry like this in your slapd's database.

dn: ref="ldap://new.host/o=New Company,c=US", o=Your
 company, c=US
objectclass: referral

Now any subtree search that has this entry in its scope will return a referral to the
new company, in addition to any entries matched in your database. Referral-aware
clients will continue the search at the new company's server.

A mechanism similar to this is used to support distributed indexing, described in
Appendix C.

51

11. Replication with slurpd

In certain configurations, a single slapd instance may be insufficient to handle the
number of clients requiring directory service via LDAP. It may become necessary to
run more than one slapd instance. At the University of Michigan, for instance, there
are four slapd servers, one master and three slaves. A DNS lookup of the name
ldap.itd.umich.edu returns the IP addresses of those four servers,
distributing the load among them. This master/slave arrangement provides a simple
and effective way to increase capacity, availability and reliability.

Slurpd provides the capability for a master slapd to propagate changes to slave
slapd instances, implementing the master/slave replication scheme described above.
Slurpd runs on the same host as the master slapd instance.

11.1 Overview

Slurpd provides replication services “in band”. That is, it uses the LDAP protocol
to update a slave database from the master. Perhaps the easiest way to illustrate this
is with an example. In this example, we trace the propagation of an LDAP modify
operation from its initiation by the LDAP client to its distribution to the slave slapd
instance.

Sample replication scenario:

Step 1: An LDAP client starts up and connects to a slave slapd.

Step 2: The LDAP client submits an LDAP modify operation to the slave
slapd.

Step 3: The slave slapd returns a referral to the LDAP client, which causes
the client to send the modify operation to the master slapd.

Step 4: The master slapd performs the modify operation, writes out the
change to its replication log file and returns a success code to the
client.

Step 5: The slurpd process notices that a new entry has been appended to
the replication log file, reads the replication log entry, and sends the
change to the slave slapd via LDAP.

Step 6: The slave slapd performs the modify operation and returns a success
code to the slurpd process.

Note that if the LDAP client happened to connect to the master slapd to begin with,
Step 3 is omitted, but the rest of the scenario remains the same.

11.2 Replication Logs

When slapd is configured to generate a replication logfile, it writes out a file in a
format which is a variant of the LDIF format. The replication log gives the
replication site(s), a timestamp, the DN of the entry being modified, and a series of
lines which specify the changes to make. In the example below, “Barbara Jensen”
has replaced a line of her multiLineDescription. The change is to be propagated to

52

the slapd instance running on truelies.rs.itd.umich.edu. The lastModifiedBy and
lastModified Time attributes are also propagated to the slave slapd.

replica: truelies.rs.itd.umich.edu:389
time: 809618633
dn: cn=Barbara Jensen, ou=People, o=University of Michigan, c=US
changetype: modify
delete: multiLineDescription
multiLineDescription: I enjoy sailing in my spare time
-
add: multiLineDescription
multiLineDescription: A dreamer...
-
delete: lastModifiedBy
-
add: lastModifiedBy
lastModifiedBy: cn=Barbara Jensen, ou=People, o=University of Michigan,
 c=US
-
delete: lastModifiedTime
-
add: lastModifiedTime
lastModifiedTime: 950825073308Z
-

The modifications to lastModifiedBy and lastModifiedTime were
initiated by the master slapd.

11.3 Command-Line Options

Slurpd supports the following command-line options.

-d <level> | ?

This option sets the slurpd debug level to <level>. When level is a ‘?’
character, the various debugging levels are printed and slapd exits,
regardless of any other options you give it. Current debugging levels (a
subset of slapd’s debugging levels) are

4 heavy trace debugging
64 configuration file processing
65535 enable all debugging

Debugging levels are additive. That is, if you want heavy trace debugging and want
to watch the config file being processed, you would set level to the sum of those
two levels (in this case, 68).

-f <filename>

This option specifies an alternate slapd configuration file. Slurpd does not
have its own configuration file. Instead, all configuration information is
read from the slapd configuration file.

-r <filename>

This option specifies an alternate slapd replication log file. Under normal
circumstances, slurpd reads the name of the slapd replication log file from
the slapd configuration file. However, you can override this with the -r

53

flag, to cause slurpd to process a different replication log file. See
section 10.5, Advanced slurpd Operation, for a discussion of how you
might use this option.

-o

Operate in “one-shot” mode. Under normal circumstances, when slurpd
finishes processing a replication log, it remains active and periodically
checks to see if new entries have been added to the replication log. In one-
shot mode, by comparison, slurpd processes a replication log and exits
immediately. If the -o option is given, the replication log file must be
explicitly specified with the -r option

-t <directory>

Specify an alternate directory for slurpd’s temporary copies of replication
logs. The default location is /usr/tmp.

-k <filename>

When slurpd uses kerberos to authenticate to slave slapd instances, it needs
to have an appropriate srvtab file for the remote slapd. This option allows
you to specify an alternate filename containing kerberos keys for the remote
slapd. The default filename is /etc/srvtab. You can also specify the
srvtab file to use in the slapd configuration file’s replica option. See the
documentation on the srvtab directive in section 5.2.2, General Backend
Options. A more complete discussion of using kerberos with slapd and
slurpd may be found in Appendix D.

11.4 Configuring slurpd and a slave slapd instance

To bring up a replica slapd instance, you must configure the master and slave slapd
instances for replication, then shut down the master slapd so you can copy the
database. Finally, you bring up the master slapd instance, the slave slapd instance,
and the slurpd instance. These steps are detailed in the following sections. You can
set up as many slave slapd instances as you wish.

11. 4. 1 Set up the master slapd

Follow the procedures in Section 4, Building and Installing slapd. Be sure that the
slapd instance is working properly before proceeding. Be sure to do the following
in the master slapd configuration file.

1. Add a replica directive for each replica. The binddn= parameter should
match the updatedn option in the corresponding slave slapd configuration
file, and should name an entry with write permission to the slave database
(e.g., an entry listed as rootdn, or allowed access via access directives
in the slave slapd configuration file).

2. Add a replogfile directive, which tells slapd where to log changes.
This file will be read by slurpd.

54

11. 4. 2 Set up the slave slapd

Install the slapd software on the host which is to be the slave slapd server. The
configuration of the slave server should be identical to that of the master, with the
following exceptions:

1. Do not include a replica directive. While it is possible to create “chains”
of replicas, in most cases this is inappropriate.

2. Do not include a replogfile directive.

3. Do include an updatedn line. The DN given should match the DN given
in the binddn= parameter of the corresponding replica= directive in the
master slapd config file.

4. Make sure the DN given in the updatedn directive has permission to write
the database (e.g., it is listed as rootdn or is allowed access by one or
more access directives).

11. 4. 3 Shut down the master slapd

In order to ensure that the slave starts with an exact copy of the master’s data, you
must shut down the master slapd. Do this by sending the master slapd process an
interrupt signal with kill -TERM <pid>, where <pid> is the process-id of
the master slapd process.

If you like, you may restart the master slapd in read-only mode while you are
replicating the database. During this time, the master slapd will return an "unwilling
to perform" error to clients that attempt to modify data.

11. 4. 4 Copy the master slapd’s database to the slave

Copy the master’s database(s) to the slave. For an LDBM-based database, you
must copy all index files as well as the “NEXTID” file. Index files will have a
different suffix depending on the underlying database package used. The current
possibilities are

dbb Berkeley DB B-tree backend
dbh Berkeley DB hash backend
gdbm GNU DBM backend
pag UNIX NBDM backend
dir UNIX NBDM backend

You should copy all files with such a suffix that are located in the index directory
specified in your slapd config file.

11. 4. 5 Configure the master slapd for replication

To configure slapd to generate a replication logfile, you add a “replica”
configuration option to the master slapd’s config file. For example, if we wish to
propagate changes to the slapd instance running on host truelies.rs.itd.umich.edu:

55

replica host=truelies.rs.itd.umich.edu:389
binddn="cn=Replicator, o=U of M, c=US"
bindmethod=simple credentials=secret

In this example, changes will be sent to port 389 (the standard LDAP port) on host
truelies. The slurpd process will bind to the slave slapd as “cn=Replicator,
o=U of M, c=US” using simple authentication with password “secret”.
Note that the entry given by the binddn= directive must exist in the slave slapd’s
database (or be the rootdn specified in the slapd config file) in order for the bind
operation to succeed.

11. 4. 6 Restart the master slapd and start the slave slapd

Restart the master slapd process. To check that it is generating replication logs,
perform a modification of any entry in the database, and check that data has been
written to the log file.

11. 4. 7 Start slurpd

Start the slurpd process. Slurpd should immediately send the test modification you
made to the slave slapd. Watch the slave slapd’s logfile to be sure that the
modification was sent.

slurpd -f <masterslapdconfigfile>

11.5 Advanced slurpd Operation

11. 5. 1 Replication errors

When slurpd propagates a change to a slave slapd and receives an error return code,
it writes the reason for the error and the replication record to a reject file. The reject
file is located in the same directory with the per-replica replication logfile, and has
the same name, but with the string “.rej” appended. For example, for a replica
running on host truelies.rs.itd.umich.edu, port 389, the reject file, if it exists, will
be named

/usr/tmp/truelies.rs.itd.umich.edu:389.

A sample rejection log entry follows:

ERROR: No such attribute
replica: truelies.rs.itd.umich.edu:389
time: 809618633
dn: cn=Barbara Jensen, ou=People, o=University of Michigan, c=US
changetype: modify
delete: multiLineDescription
multiLineDescription: I enjoy sailing in my spare time
-
add: multiLineDescription
multiLineDescription: A dreamer...
-
delete: lastModifiedBy
-
add: lastModifiedBy
lastModifiedBy: cn=Barbara Jensen, ou=People, o=University of Michigan,

56

 c=US
-
delete: lastModifiedTime
-
add: lastModifiedTime
lastModifiedTime: 950825073308Z
-

Note that this is precisely the same format as the original replication log entry, but
with an ERROR line prepended to the entry.

11. 5. 2 Slurpd’s one-shot mode and reject files

It is possible to use slurpd to process a rejection log with its “one-shot mode.” In
normal operation, slurpd watches for more replication records to be appended to the
replication log file. In one-shot mode, by contrast, slurpd processes a single log
file and exits. Slurpd ignores ERROR lines at the beginning of replication log
entries, so it’s not necessary to edit them out before feeding it the rejection log.

To use one-shot mode, specify the name of the rejection log on the command line as
the argument to the -r flag, and specify one-shot mode with the -o flag. For
example, to process the rejection log file
/usr/tmp/replog.truelies.rs.itd.umich.edu:389 and exit, use the
command

slurpd -r /usr/tmp/truelies.rs.itd.umich.edu:389 -o

11.6 Replication from a slapd directory server to an X.500 DSA

In mixed environments where both X.500 DSAs and slapd are used, it may be
desirable to replicate changes from a slapd directory server to an X.500 DSA. This
section discusses issues involved with this method of replication, and describes the
currently-available facilities.

To propagate changes from a slapd directory server to an X.500 DSA, slurpd runs
on the master slapd host, and sends changes to an ldapd which acts as a gateway to
the X.500 DSA:

LDAP
cl ient

mast er
slapd

LDAP

slur pd

Repl icat ion
Log

ldapd

X.500 DSA

DAP

LDAP

57

Figure 6: Replication from slapd to an X.500 DSA

Note that the X.500 DSA must be a read-only copy. Since the replication is one-
way, updates from DAP clients connecting to the X.500 DSA simply cannot be
handled.

A problem arises where attribute names differ between the slapd directory server
and the X.500 DSA. At present, slapd and slurpd do not support selective
replication of attributes, nor do they support translation of attribute names and
values. For example, slurpd will attempt to update the “modifiersName” and
“modifyTimeStamp” attributes on the slave it connects to. However, the X.500
DSA may expect these attributes to be named “lastModifiedBy” and
“lastModifiedTime”.

A solution to this attribute naming problem is to have the ldapd read oidtables that
map "modifiersName" to the objectID (OID) for the "lastModifiedBy" attribute and
"modifyTimeStamp" to the OID for the "lastModifiedTime" attribute. Since attribute
names are carried as OIDs over DAP, this should perform the appropriate
translation of attribute names.

58

59

12. Appendix A: Writing a slapd Backend

Slapd has a front end that handles connection management, access control, and
protocol interpretation, and a number of backends that handle database operations.
The two pieces communicate through a well-defined API. This section documents
that API for programmers who want to write their own database backend, and
describes the steps necessary to integrate a new backend with slapd.

Here’s a quick overview of the steps you should follow to create a new backend for
slapd.

1. Choose a name for your backend (we’ll call it foo) and create a new directory
in the slapd source area (servers/slapd/) called back-foo. This
directory will contain the backend routines you are about to write. You should
also create a Make-template file in this directory. See the other Make-
template files in the various back-*/ directories for examples.

2. Write backend routines for each function you want your backend to provide.
See the next section for details on how to do this and the API your routines
should export. You should prefix your backend routines with “foo_” to ensure
uniqueness. Your backend will undoubtedly want to call some of the utility
routines described in section A.2.

3. Edit the file servers/slapd/backend.c to add declarations for the backend routines
you wrote in step 2, and to initialize a backend structure. Take a look at the
existing definitions in that file for other backends.

12.1 The slapd Backend API

The slapd backend API (SLAPI) consists of twelve calls. Nine of the calls
correspond to the nine LDAP protocol operations bind, unbind, search, compare,
modify, modify RDN, add, delete, and abandon. The other three calls are to
initialize the backend, shut down the backend, and handle backend-specific
configuration. Each call is described in detail below. The first nine routines are
passed the same first three parameters:

Backend *be /* info about this backend */
Connection*conn/* info about this connection */
Operation *op /* info about this operation */

The other parameters depend on the call itself.

12. 1. 1 Bind

The SLAPI bind routine is defined as follows.

60

foo_bind(
Backend *be,
Connection *conn,
Operation *op,
char *dn,
int method,
struct berval *cred

)

The first three parameters are as defined above. The remaining parameters are

dn The distinguished name to bind as.

method The authentication method to use. It should be one of the
ldap.h constants

LDAP_AUTH_SIMPLE
LDAP_AUTH_KRBV41
LDAP_AUTH_KRBV42

cred The credentials for the bind (either a password or Kerberos
credentials).

The bind routine should return a value of 0 if the bind is successful, nonzero
otherwise. This is important, as a return of 0 will cause the front end to consider the
connection authenticated, and it will base subsequent access control decisions
assuming the DN supplied is authentic.

Things to note:

• If the length of the credentials supplied for simple authentication is zero, a
NULL bind is being requested. This should succeed.

• If a client sends a NULL dn, a NULL bind is also requested. This situation is
handled by the front end, so you will never see it.

12. 1. 2 Unbind

The SLAPI unbind routine is defined as follows.

foo_unbind(
Backend *be,
Connection*conn,
Operation *op

)

The only three parameters are the common parameters defined above. The
connection will be dropped by the front end. The unbind backend routine is
provided so the backend can do any clean-up of local information it has pertaining
to the connection.

12. 1. 3 Compare

The SLAPI compare function is defined as follows.

61

foo_compare(
Backend *be,
Connection*conn,
Operation *op,
char *dn,
Ava *ava

)

The first three parameters are the common ones described above. The other
parameters are

dn The distinguished name of the entry on which to perform the
compare.

ava The attribute value assertion to test against the entry.

The AVA structure is defined as follows.

typedef struct ava {
char *ava_type;
struct berval ava_value;

} Ava;

The type to compare is given in the ava_type field, and the value to compare is
given in the ava_value field.

12. 1. 4 Search

The SLAPI search routine is defined as follows.

foo_search(
Backend *be,
Connection*conn,
Operation *op,
char *base,
int scope,
int sizelimit,
int timelimit,
Filter *filter,
char *filterstr,
char **attrs,
int attrsonly

)

The first three parameters are the common ones described above. The rest of the
parameters are

base The DN of the base object at which to start the search.

scope The scope of the search. One of the ldap.h constants

LDAP_SCOPE_BASEOBJECT
LDAP_SCOPE_ONELEVEL
LDAP_SCOPE_SUBTREE

62

sizelimit A client-supplied limit on the number of entries to return. A
value of zero implies no limit.

timelimit A client-supplied limit on the number of seconds to spend on
the search. A value of zero implies no limit.

filter A data structure representing the search filter. A backend
would normally use either this parameter or the filterstr
parameter, not both. See below for a description of this
structure.

filterstr A string representation of the search filter. A backend would
normally use either this parameter or the filter parameter,
not both. The format of this string is as defined in RFC
1588.

attrs An array of char *’s indicating the attributes to return
from the search. A NULL value for attrs implies all
attributes.

attrsonly A Boolean parameter indicating whether only attribute types
should be returned (non-zero) or if attribute types and values
should be returned (zero).

The Filter structure is used to represent an LDAP search filter. The search filter is
described in ASN.1 as the following.

Filter ::= CHOICE {
and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equalityMatch [3] AttributeValueAssertion,
substrings [4] SubstringFilter,
greaterOrEqual [5] AttributeValueAssertion,
lessOrEqual [6] AttributeValueAssertion,
present [7] AttributeType,
approxMatch [8] AttributeValueAssertion

}

The C language Filter structure definition used to represent this via the filter
parameter is defined as follows in the slap.h header file.

63

typedef struct filter {
unsigned long f_choice; /* from ldap.h */
union {

char *f_un_type /* present */
Ava f_un_ava; /* eq,approx,le,ge */
struct filter *f_un_complex;/* and,or,not */
struct sub { /* substrings */

char *f_un_sub_type;
char *f_un_sub_initial;
char **f_un_sub_any;
char *f_un_sub_final;

} f_un_sub;
} f_un;

#define f_type f_un.f_un_type
#define f_ava f_un.f_un_ava
#define f_avtype f_un.f_un_ava.ava_type
#define f_avvalue f_un.f_un_ava.ava_value
#define f_and f_un.f_un_complex
#define f_or f_un.f_un_complex
#define f_not f_un.f_un_complex
#define f_list f_un.f_un_complex
#define f_sub f_un.f_un_sub
#define f_sub_type f_un.f_un_sub.f_un_sub_type
#define f_sub_initial f_un.f_un_sub.f_un_sub_initial
#define f_sub_any f_un.f_un_sub.f_un_sub_any
#define f_sub_final f_un.f_un_sub.f_un_sub_final

struct filter *f_next; /* in and/or chain */
} Filter;

The f_choice field will have one of the following values, defined in the ldap.h
header file.

LDAP_FILTER_AND
LDAP_FILTER_OR
LDAP_FILTER_NOT
LDAP_FILTER_EQUALITY
LDAP_FILTER_SUBSTRINGS
LDAP_FILTER_GE
LDAP_FILTER_LE
LDAP_FILTER_PRESENT
LDAP_FILTER_APPROX

12. 1. 5 Modify

The SLAPI modify function is defined as follows.

foo_modify(
Backend *be,
Connection*conn,
Operation *op,
char *dn,
LDAPMod *mods

)

The first three parameters are the common ones described above. The other
parameters are

64

dn The distinguished name of the entry to modify.

mods The list of modifications to make to the entry.

The LDAPMod structure is defined as follows in the ldap.h header file.

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;

} mod_vals;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

struct ldapmod *mod_next;
} LDAPMod;

The mod_op field identifies the type of modification and will have one of the
following values, defined in the ldap.h header file.

LDAP_MOD_ADD
LDAP_MOD_DELETE
LDAP_MOD_REPLACE

Note that the mod_bvalues form of representing values is always used, but that
the mod_op field is not ORed with LDAP_MOD_BVALUES, as LDAP clients must
do to use the mod_bvalues field.

12. 1. 6 Modify RDN

The SLAPI modify RDN function is defined as follows.

foo_modifyrdn(
Backend *be,
Connection*conn,
Operation *op,
char *dn,
char *newrdn,
int deleteoldrdn

)

The first three parameters are the common ones described above. The other
parameters are

dn The distinguished name of the entry whose name is to be
changed.

newrdn The new RDN to give the entry.

deleteoldrdn

A Boolean flag indicating whether the old RDN is to be
deleted from the entry (non-zero) or kept as a non-
distinguished attribute value in the entry (zero).

65

12. 1. 7 Add

The SLAPI add function is defined as follows.

foo_add(
Backend *be,
Connection*conn,
Operation *op,
Entry *e

)

The first three parameters are the common ones described above. The additional
parameter is

e A pointer to an Entry structure specifying the entry to add.

The Entry structure is defined in the slap.h header file as follows.

typedef struct entry {
char *e_dn;
Attribute *e_attrs;
/* other things you should not mess with */

} Entry;

The e_dn field contains the DN of the entry.

The e_attrs field is a linked list of the entry’s attributes. Each element of this list
has the following definition, as given in slap.h.

typedef struct attr {
char *a_type;
struct berval **a_vals;
int a_syntax;
struct attr *a_next;

} Attribute;

The a_syntax field identifies the syntax of the attribute and will have one of the
following values, defined in slap.h.

SYNTAX_CIS/* case insensitive string */
SYNTAX_CES/* case sensitive string */
SYNTAX_BIN/* binary data */
SYNTAX_TEL/* telephone number string */
SYNTAX_DN /* dn string */

The syntax values may be additive in some cases. For example, an attribute of type
telephoneNumber will have syntax (SYNTAX_CIS | SYNTAX_TEL).

12. 1. 8 Delete

The SLAPI delete function is defined as follows.

66

foo_delete(
Backend *be,
Connection*conn,
Operation *op,
char *dn

)

The first three parameters are the common ones described above. The additional
parameter is

dn The distinguished name of the entry to delete.

12. 1. 9 Abandon

The SLAPI abandon function is defined as follows.

foo_abandon(
Backend *be,
Connection*conn,
Operation *op,
int id

)

The first three parameters are the common ones defined above. The additional
parameters is

id the message identifier of the request to be abandoned.

In addition, the front end will set the o_abandoned flag in the operation’s
Operation structure. Backends may check this flag periodically to see if the
operation has been abandoned.

12. 1. 10 Initialization

When a new backend instance is encountered in the slapd configuration file, the
corresponding SLAPI initialization routine is called. It is defined as follows.

foo_init(
Backend *be

)

The sole parameter is

be The backend-specific data structure.

The be parameter is used to hold backend-specific information. It is as defined in
the beginning of this section in the slap.h header file. If your backend needs to
keep any information specific to a backend instance, it should put it in the
be_private field of the be parameter.

12. 1. 11 Configuration

When a configuration option unknown to the front end is encountered in a database
definition in the slapd configuration file, it is parsed and passed to a backend-

67

specific configuration routine for processing. The SLAPI backend-specific
configuration routine is defined as follows.

foo_config(
Backend *be,
int lineno,
int argc,
char **argv

)

The parameters are

be The backend-specific data structure defined above.

lineno The current line number in the configuration file. This is
useful if an error message has to be printed.

argc The number of arguments from the configuration file line.

argv The list of arguments from the configuration file line.

12. 1. 12 Close

When slapd exits normally, it calls a close routine provided by each backend
database, allowing the backends to clean up and shut down properly. The SLAPI
close routine is defined as follows.

foo_close(
Backend *be

)

The sole parameter is

be The backend-specific data described above.

12.2 Utility Routines Your Backend May Want to Call

There are several utility routines provided for dealing with various data types,
sending results and errors to clients, etc., that your backend will likely want to call.
Some of the more common and useful routines are described here.

12. 2. 1 Sending Search Entries

The send_search_entry() routine is used to encode a search result entry and send it
back to the client. It is defined as follows.

send_search_entry(
Backend *be,
Connection*conn,
Operation *op,
Entry *e,
char **attrs,
int attrsonly

)

68

The first three parameters are the common ones passed to the backend routines. The
entry to send back is given in e. An array of attribute types to include from the entry
(subject to access control) is given in attrs. The attrsonly parameter determines
whether attributes only or attributes and values should be sent back.

12. 2. 2 Sending a Result

An LDAPResult is sent to the client by calling the send_ldap_result() routine,
defined as follows.

send_ldap_result(
Connection*conn,
Operation *op,
int err,
char *matched,
char *text

)

The first two parameters are two of the three common parameters passed to the
backend. The err parameter is the LDAP error code to pass back. It should be one
of the codes defined ldap.h. The matched parameter should only be non-NULL if
err is set to LDAP_NO_SUCH_OBJECT. In this case, matched gives the DN
prefix of the request that was resolved successfully. The final parameter, text, is an
arbitrary string sent back to the client. It is meant to contain a helpful error message.

12. 2. 3 Testing a Filter Against an Entry

Often, your backend may need to test an entry to see if it satisfies a given search
filter. The test_filter() routine is provided for this purpose.

test_filter(
Backend *be,
Connection*conn,
Operation *op,
Entry *e,
Filter *filter

)

The first three parameters are the common ones. The e parameter is the entry to
match against the filter, given in the filter parameter. test_filter() returns zero if the
entry matches the filter, non-zero otherwise.

12. 2. 4 Creating an Entry

Two routines are provided to convert between the LDIF text entry format and the
internal representation. They are

str2entry(
char *s

)

where s is the string containing the LDIF entry; and

69

char *
entry2str(

Entry *e,
int *len,
int printid

)

where len will contain the length of the string returned, and printid indicates
whether the entry ID should be printed in the LDIF format. The string returned
should be considered a pointer to static storage that is overwritten on each call.

70

13. Appendix B: Writing a SHELL backend

This section provides information for system administrators wanting to use the
SHELL backend to slapd. It explains the input format, output format, and calling
conventions a SHELL backend program must follow to communicate with slapd.

13.1 Overview

When slapd receives an operation to a SHELL backend, the backend consults the
information given in the slapd configuration file to determine what program to
invoke to handle the operation. For example, if the SHELL database definition in
the configuration file contained a line like this

search /usr/local/bin/search.sh

The indicated command would be invoked in response to a search request.

Slapd feeds a text representation of the request to the command on the command's
standard input. Slapd then reads a text representation of the results or errors
produced by the command from the command's standard output. These text results
are converted to LDAP format and returned to the client. Slapd pays attention to the
exit status of the command in some situations (i.e., to determine if a BIND request
has succeeded or not).

The next sections discuss these input, output, and exit conventions in more detail.

13.2 Input Format

The input to your SHELL backend program is a simple text-based, newline
separated sequence of <option>: <value> pairs conveying the type and
information in a request. The exact format for each request is given below. All
requests start with a key word indicating the type of request, a msgid: line
indicating the unique message ID of the operation, and one or more suffix: lines
indicating the database suffix(es) the backend is configured for.

13. 2. 1 Bind

The input format for a BIND request is as follows.

BIND
msgid: <integer>[suffix: <dn>]+
dn: <binddn>
method: <integer>
credlen: <integer>
cred: <credentials>

The msgid parameter is a unique identifier for the operation. The method
parameter will be one of the LDAP authentication methods listed in <ldap.h>.
The only credential currently supported is a clear-text password (used with a simple
bind).

71

13. 2. 2 Unbind

The input format for an UNBIND request is as follows.

UBBIND
msgid: <integer>
[suffix: <dn>]+
dn: <binddn>

This routine is provided so the backend can do any clean-up necessary.

13. 2. 3 Search

The input format for a SEARCH request is as follows.

SEARCH
msgid: <integer>
[suffix: <dn>]+
base: <baseobjectdn>
scope: 0 | 1 | 2
deref: 0 | 1 | 2 | 3
sizelimit: <integer>
timelimit: <integer>
filter: <ldapfilter>
attrsonly: 0 | 1
attrs: all | <attrlist>

The values of the scope parameter correspond to the various LDAP scopes listed
in <ldap.h>.

The values of the deref parameter correspond to the various LDAP dereference
options listed in <ldap.h>.

The filter parameter is a string representation of the LDAP search filter, as
described in RFC 1588.

The <attrlist> is a space-separated list of attributes to retrieve.

13. 2. 4 Compare

The input format for a COMPARE request is as follows.

COMPARE
msgid: <integer>
[suffix: <dn>]+
dn: <entrydn>
<attrtype>: <attrvalue>

The AVA (attribute value assertion) to compare to the entry is given in the
<attrtype>: <attrvalue> line.

72

13. 2. 5 Modify

The input format for a MODIFY request is as follows.

MODIFY
msgid: <integer>
[suffix: <dn>]+
dn: <entrydn>
[add: <attrtype>
 [<attrtype>: <attrvalue]+]*
[delete: <attrtype>
 [<attrtype>: <attrvalue]*]*
[replace: <attrtype>
 [<attrtype>: <attrvalue]+]*

The add, delete and replace constructs indicate the modifications to make.

13. 2. 6 Modify RDN

The input format for a MODIFY RDN request is as follows.

MODRDN
msgid: <integer>
[suffix: <dn>]+
dn: <entrydn>
newrdn: <rdn>
deleteoldrdn: 0 | 1

The deleteoldrdn parameter is a Boolean parameter (where 0 means false and 1
means true).

13. 2. 7 Add

The input format for an ADD request is as follows.

ADD
msgid: <integer>
[suffix: <dn>]+
<entry>

The <entry> parameter is a text representation of the entry to add in LDIF format,
as described in Section 6.3.

13. 2. 8 Delete

The input format for a DELETE request is as follows.

ADD
msgid: <integer>
[suffix: <dn>]+
dn: <entrydn>

73

13. 2. 9 Abandon

The input format for an abandon operation is as follows.

ABANDON
msgid: <integer>
[suffix: <dn>]+

For the abandon operation, the msgid parameter gives the message ID of the
operation to abandon.

13.3 Output Format

There are two possible results a SHELL backend command can produce: search
entries, and results. The format of each is described below.

13. 3. 1 Search Entry

The format of a search entry is the LDIF format described in Section 6.3. Multiple
entries can be given by separating the entries by blank lines. The ldif program
described in Section 8.2.6 can be very helpful in producing the LDIF format
required by the SHELL backend.

13. 3. 2 Result

The format of a result is as follows.

RESULT
code: <integer>
matched: <partialdn>
info: <string>

All of the parameters are optional and will be given default values if omitted. If
search entries have been returned, the RESULT follows the last one, with a blank
line preceding the RESULT.

13. 3. 3 Debugging

A SHELL backend command may produce debugging statements which may be
logged but otherwise ignored by slapd. Any output line beginning with the
characters "DEBUG:" will be treated as a debugging statement by slapd.

This feature can be useful when trying to debug a problem with your SHELL
backend. If you turn on SHELL debugging in slapd (level 1024), it will log
anything it reads from a SHELL backend, allowing you to see your backend's
debugging statements easily.

13.4 Exit Status

SHELL backend commands should be mindful of their exit status. This status is
examined by the invoking slapd to determine whether the command succeeded or
not. This can be important for a number of reasons.

74

1. For modify operations, the exit status determines whether the modification
should be logged and sent out to replicas or not.

2. For bind operations, the exit status determines whether the bind was
successful, and therefore whether the DN given should be trusted on future
access control decisions.

An exit status of zero indicates the command was successful. A non-zero exit status
indicates the command was not successful.

Note that on a bind operation, a zero exit status indicates that the DN given in the
bind should be trusted on future access control decisions. This means that if, for
example, a NOAUTH bind (no password provided) succeeds, you should be sure
not to return an exit status of zero.

13.5 Example

The following example illustrates a simple use of the SHELL backend to provide
LDAP access to the /etc/passwd file on a machine.

13. 5. 1 Configuration file

Our example makes use of the following simple configuration file.

referral ldap://ldap.itd.umich.edu
database shell
suffix "o=university of michigan, c=us"
search /usr/local/bin/searchexample.sh

This configuration defines a single SHELL backend, for entries in the
“o=University of Michigan, c=US” subtree. Requests involving any
other subtree will be sent to the LDAP server running on the host
ldap.itd.umich.edu. A search operation will cause the command
/usr/local/bin/searchexample.sh to be executed. Any other operation
will result in an “unwilling to perform” error being returned to the client.

13. 5. 2 Search command shell script

The search command in our example is implemented by the following bourne shell
script. It assumes a very simple filter of the form (uid=login) where login is a
user’s UNIX login. It extracts the login from the filter, does a simple grep for it in
the /etc/passwd file, and parses the resulting line (if any) using awk to pull out
the gecos field.

Note that our simple example does no error checking, handles only very simple
filters, ignores the scope, sizelimit, timelimit and other parameters, and
is meant for illustrative purposes only. A real example should do more error
checking and handle more situations.

75

1. #!/bin/sh
2. while [1]; do
3. read TAG VALUE
4. if [$? -ne 0]; then
5. break
6. fi
7. case "$TAG" in
8. base:)
9. BASE=$VALUE
10. ;;
11. filter:)
12. FILTER=$VALUE
13. ;;
14. esac
15. done
16. LOGIN=`echo $FILTER | sed -e 's/.*=\(.*\))/\1/'`
17. PWLINE=`grep -i "^$LOGIN" /etc/passwd`
18. if [$? = 0]; then
19. echo "DEBUG: passwd line is $PWLINE"
20. echo $PWLINE | awk -F: '{
21. printf("dn: cn=%s,%s\n", $1, base);
22. printf("cn: %s\n", $1);
23. printf("cn: %s\n", $5);
24. printf("sn: %s\n", $1);
25. printf("uid: %s\n", $1);
26. }' base="$BASE"
27. echo ""
28. fi
29. echo "RESULT"
30. echo "code: 0"
31. exit 0

The line numbers are for illustrative purposes only and do not appear in the actual
file.

Note the debugging statement on line 19. The output from this statement is ignored
by slapd because of the DEBUG: prefix, unless debugging is turned on, in which
case it may be logged (depending on the debugging level) but will otherwise not
affect the search results sent.

76

14. Appendix C: Distributed Indexing with centipede

centipede is the LDAP centroid index generation and maintenance program. You
can use it to extract centroid or other index information from one LDAP server and
install it in another. Although index information can be extracted from any LDAP
server, only a slapd LDAP server will understand the information and thus be
capable of making use of it as indexing information (i.e., you should only attempt
to install index information in a slapd LDAP server). centipede is very experimental
at the moment, so use it at your own risk.

Why would you want to do this? If you want to support searches whose scope
cannot be easily restricted using the LDAP namespace, centipede can make these
searches efficient. For example, what if you are looking for Babs Jensen, but you
don't know what company she works for, or even what state she's in. All you
know is that she is a US resident. A search of the entire c=US subtree may be what
you want to do, but that's potentially very expensive since it involves contacting
every server in the US. With centipede, an indexing slapd can use the index
information centipede provides to prune the search space of servers, only referring
the client to servers likely to have information on Babs. Or, you might want to
create a special index area in your LDAP tree that collects centipede information
from other servers based on some entirely different criteria not related to the
hierarchy of the LDAP namespace.

The general form of a centipede command is as follows.

ETCDIR/centipede [-f filter] [-F] [-R] [-f filter]
[-t directory] [-m authmethod] [-b binddn]
[-p passwd] [-c cachesize]
-s sourceurl
-d desturl
attributes

The options have the following meanings.

-v

Turn on verbose mode. This option can be given multiple times to increase
the level of verbosity.

-n

Do not actually install index information. Useful in conjunction with -v for
seeing what centipede is up to.

-f ldapfilter

Specify a filter used to select the entries for which to generate indexing
information. ldapfilter should be a string LDAP filter as described by
RFC 1588.

-F

Generate full, as opposed to relative, index information.

77

-R

Generate relative, as opposed to full, index information. Full information is
still generated if there is no previous information available from which to
generate the relative information. This is the default.

-t directory

Specify the directory in which to create temporary files, find existing index
information, and put new index information. The default is whatever is used
by tempnam(3).

-b binddn

Specify the DN to authenticate with when extracting index information.

-p passwd

Specify the password to use for simple authentication when extracting index
information.

-m authmethod

Specify the authentication method to use when extracting index information.
authmethod should be either "simple" or "kerberos".

-B binddn

Specify the DN to authenticate with when installing index information.

-P passwd

Specify the password to use for simple authentication when installing index
information.

-M authmethod

Specify the authentication method to use when installing index information.
authmethod should be either "simple" or "kerberos".

-c cachesize

Specify the size in bytes of the cache used when building the new index
information. Upping this number can cause a big performance boost, if
you've got the memory for it.

14.1 An Example

Suppose you are running an LDAP server on the host babs.com for an
organization called "BabsCo" based in the US, and you want to participate in the
c=US indexing scheme described above by generating index information for the
cn, sn and objectclass attributes in all the people entries in your subtree. You
want to install the index informatioin in the indexing slapd running on the host
vertigo.rs.itd.umich.edu under the c=US entry. This way, when an
LDAP client connects to the slapd on vertigo and does a subtree search of
c=US, slapd can consult the index information to tell whether it should refer the
client to your server or not. You could accomplish this with a command like this:

78

$(ETCDIR)/centipede -f '(objectclass=person)'
-m simple -b <your-rootdn> -p <your-rootdnpw>
-s "ldap://babs.com/o=BabsCo, c=US"
-d "ldap://vertigo.rs.itd.umich.edu/c=US"
cn sn objectclass

Note the -b and -p options can be used to authenticate as an entity able to read all
the information you want.

14.2 Limitations

This is all very experimental at the moment, and is subject to change. The scheme is
very promising, but lots of stuff needs to be worked out, such as how clients
discover indexing servers, how indexing servers discover index sources, how best
to maintain the information, etc.

Currently, centipede only handles value-based index information. A future version
of centipede will allow other types of index information to be manipulated (e.g.,
word-based indexes, substring indexes, phonetic indexes, hash indexes, etc.). A
future version may also allow weights to be generated for the index values.

Finally, centipede works strictly over LDAP at the moment. If and when the
Common Indexing Protocol develops, centipede may change to use CIP instead.

79

15. Appendix D: Using Kerberos authentication with
slapd and slurpd.

Slapd and slurpd both support authentication using MIT's Kerberos 4 system,
which is supported in the LDAP protocol as a stronger form of authentication than
simple (clear-text password) authentication. This appendix describes how to
configure slapd and slurpd to support Kerberos 4 authentication, and how to link
Kerberos identities to directory entries. Note that some LDAP clients do not
support Kerberos authentication.

15.1 Build the U-M LDAP Package with Kerberos Support Enabled

By default, Kerberos support is not included when you build slapd and slurpd as
part of the U-M LDAP package. You will need to edit the Make-common file to
enable Kerberos before you make the software. See section 4 above for
instructions on building the LDAP package.

15.2 Using Kerberos with slapd

Follow these steps to configure slapd for Kerberos authentication.

15. 2. 1 Obtain a srvtab File for Your slapd Server

You will need to add your slapd server to your realm's Kerberos server and extract
an appropriate srvtab (service key) file. This is typically done using MIT's
kdb_edit and ext_srvtab utilities, and must be done by someone who has privileged
access to the Kerberos database (the Kerberos administrator).

You will actually want to add two Kerberos entries for each slapd server: one with
a name portion of ldapserver and one with a name portion of x500dsa. The
second one is necessary because most LDAP clients that use Kerberos have no way
of knowing that they are connected to a server that is not back-ended by an X.500
DSA, so they will try to authenticate in two steps, first using to the LDAP server
and then to the X.500 DSA. slapd will ignore the second authentication step, but
the LDAP clients will be unhappy if the x500dsa principal does not exist.

The instance portion of both principals needs to match the first part of the real name
of the host on which you run slapd. LDAP clients will determine the real name of
the slapd host by performing a reverse (gethostbyaddr-style or “in-
addr.arpa”) Domain Name Service lookup on the IP address of the slapd host,
and then they will use the part to the left of the first dot (.) as the Kerberos instance
name for the server.

For example, if an LDAP client is told to connect to the server on the host
“d.rs.itd.umich.edu”, it will perform a forward (gethostbyname-style) DNS
lookup and open a TCP LDAP connection to IP address 141.211.164.2 port 389.
When doing Kerberos authentication, it will look up the hostname using the IP
address and see that the real host name is terminator.rs.itd.umich.edu.
Thus the Kerberos tickets (shown in name.instance@realm format) that the
client will obtain and pass to slapd will be:

80

ldapserver.terminator@umich.edu
and

x500dsa.terminator@umich.edu

(assuming that “umich.edu” is your Kerberos realm). Both of these principals
need to be added to the “umich.edu” Kerberos database, and a srvtab file would
need to be extracted that contains their service keys.

15. 2. 2 Install the srvtab File and Tell slapd Where It Is

Place the srvtab file on the machine where you are going to run slapd and add a
“srvtab” line to the slapd configuration file. The srvtab config. file option
simply contains the full path to the “ldapserver/x500dsa” service key file
obtained in the previous step (the default is /etc/srvtab if no srvtab option is
specified). For example, assuming the srvtab is in a file called
/etc/slapd.srvtab, this would be an appropriate slapd config. file line:

srvtab /etc/slapd.srvtab

If slapd is already running, you will need to kill and restart it to have slapd
recognize the new option.

15. 2. 3 Add Kerberos Names to Entries to Enable Authentication

To authenticate as an entry in the directory using Kerbeors, the entry must contain
one or more krbName (Kerberos Name) attributes that associate a Kerberos
identity with the entry. Each krbName value should be a string of the form:

principal.instance@realm

(the instance part is optional). For example, to allow the principal “bjensen” in
the “umich.edu” Kerberos realm to authenticate to slapd as the entry “cn=Babs
Jensen, o=University of Michigan, c=US”, you could use the
ldapmodify(1) tool (or another LDAP client) to add a krbName attribute to her
entry that has the string value “bjensen@umich.edu”. To do this, first you
would first create a file called /tmp/modify with the contents:

cn=Babs Jensen, o=University of Michigan, c=US
krbName=bjensen@umich.edu

and then use a command like this to actually make the change:

ldapmodify -f /tmp/modify -D "cn=Manager, o=University of
Michigan, c=US" -w secret

Note that the above command assumes that you have set rootdn to
“cn=Manager, o=University of Michigan, c=US” and rootpw to
“secret” in your slapd configuration file.

You should now be able to authenticate to slapd as Bab's entry using Kerberos.
For example, the following commands will authenticate using Kerberos and
perform a search for all entries that have a surname of “Smith” while bound as

81

Babs' entry and retrieve the commonName of each entry (text you would type is
whown in bold):

kinit bjensen
University of Michigan (terminator.rs.itd.umich.edu)
Kerberos Initialization for "bjensen"
Password:secret

ldapsearch -k -D " cn=Babs Jensen, o=University of
Michigan, c=US" sn=smith cn

15. 2. 4 Associate a Kerberos Name with the “rootdn” (optional)

If you want to use Kerberos to authenticate as the slapd rootdn (the special DN
that is not subject to access control or administrative limits), you should add a
rootkrbname directive to the slapd config. file. For example, if bjensen
should have the ability to authenticate as the rootdn when she authenticates to
Kerberos using an instance of "admin", you would include a line like this in the
slapd config. file:

rootkrbname bjensen.admin@umich.edu

15.3 Using Kerberos With slurpd

Slurpd (the replication daemon) is capable of using Kerberos authentication when
authenticating to the slave slapds that it is configured to serve. To enable this
feature, follow these steps:

15. 3. 1 Obtain a srvtab File for Your slurpd Server

Create a Kerberos principal entry in your realm's Kerberos database for slurpd.
The name and instance can be anything you like (unlike the “ldapserver” and
“x500dsa” principals you must use for slapd). You will need to obtain and install
a srvtab file that contains this slurpd Kerberos key (install it on the machine where
slurpd will run). As mentioned above, you will need to contact your Kerberos
administrator to get this file. For the examples that follow, we will assume that you
have added a Kerberos database entry and obtained a srvtab file for the principal:
slurpd.terminator@umich.edu and installed it in a file called
/etc/slurpd.srvtab

15. 3. 2 Configure the slapd Slaves to Accept Kerberos Authentication

Each slapd slave must be compiled and configured to support Kerberos
authentication (as discussed previously). In addition, the updatedn used by
slurpd to authenticate when sending updates to the slaves must have a Kerberos
Name associated with it that matches the slurpd srvtab file obtained in the previous
step. This can be done as for any other entry simply by adding the appropriate
krbName attribute value to the updatedn entry in slapd. If you happen to be
using the rootdn as the updatedn, then you can just include an appropriate
rootkrbname directive in the slapd config. file, e.g.,

82

rootkrbname slurpd.terminator@umich.edu

15. 3. 3 Configure slurpd to Use Kerberos When Connecting to the Slaves

You need to use a bindmethod of kerberos and specify the path to an
appropriate srvtab file within the replica configuration file options. You will
also need to specify the path to the srvtab file. E.g.,

replica host=slave1.umich.edu
"binddn=cn=Manager, o=University of Michigan, c=US"
bindmethod=kerberos
srvtab=/etc/slurpd.srvtab

Don't forget to restart both slurpd and the slapd slaves after making changes to the
config. file(s).

